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Outline 1

• End of november Thierry Coquand send me a paper on ordinals

where Kruskal’s theorem is mentioned. I never hear on quasi-

orders. To train I’ve manage some proof on total order.

• At the beginning of december I’ve found ENS Cachan lecture on

this topic where proofs are well explained

S. Demri, A. Finkel, J. Goubault-Larrecq, S. Schmitz and PH. Sch-

noebelen. Well-Quasi-Orders For Algorithms MPRI Course 2.9.1

-2017/2018.
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Outline 2

• Strangely theorems on minimal bad seqence are not present but

used in Cachan lecture

• 4 weeks proof effort

• We have used our general recursive operator FrSB to construct

sequences.
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Definitions 3

Let S type be a carrier set.

A quasi-order is a reflexive and transitive relation.

qo = {S 7→ g|S ⊆ S type∧g ∈ S↔S∧S�id ⊆ g∧g; g ⊆ g}

In a well-quasi-order all infinite sequences are good.

wqo = {S 7→ g|S 7→ g ∈ qo∧
(∀f · f ∈ N→ S

⇒
(∃i, j · i ≥ 0 ∧ j > i ∧ f(i) 7→ f(j) ∈ g))}
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Definitions 4

sdc = (λS 7→ g · S 7→ g ∈ qo |
{f |f ∈ N→ S∧

(∀i, j · i ≥ 0 ∧ j > i⇒ f(j) 7→ f(i) ∈ g \ g−1)})

wf = {S 7→ g|S 7→ g ∈ qo ∧ sdc(S 7→ g) = ∅}

antichain =

(λS 7→ g · S 7→ g ∈ qo|{A|A ⊆ S ∧ (A×A) ∩ g ⊆ id})
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Definitions 5

We assume the Axiom of Choice using a choice function. Remark in

a quasi order two element can be equivalent then we can define the

set of classes of a qo.

class =

(λS 7→ g.S 7→ g ∈ qo|
∪ x · x ∈ S|{{y|y ∈ S ∧ x 7→ y ∈ g ∧ y 7→ x ∈ g}})

and using the choice function ch on S type ( ch ∈ P 1(S type)→
S type and ∀s · s ∈ P 1(S type)⇒ ch(s) ∈ s) we can have the

set of canonical representatives of classes.

crclass = (λS 7→ g.S 7→ g ∈ qo|ch[class(S 7→ g)])
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General recursion 6

We instantiate FrSB with S,B := N, S type.

r is a well-founded relation on N. Let g be a function such that:

g ∈ (N× (N 7→ S type))→ S type .

There is a unique total function fr: fr ∈ N→ S type such that we

have:

∀n · n ∈ N ⇒ fr(n) = g(n 7→ r−1[{n}] � fr)

The value of fr at n depends on its value on the set r−1[{n}],
FrSB is a function (an operator) which gives the recursive fonction

fr: fr = FrSB(r 7→ g)
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General recursion 7

We instantiate FrSB with S,B := N, S type.

{i 7→ j|i ≥ 0 ∧ i < j} is a well-founded relation on N. Let g be a

function such that: g ∈ (N× (N 7→ S type))→ S type .

There is a unique total function fr: fr ∈ N→ S type such that we

have: ({i 7→ j|i ≥ 0 ∧ i < j}−1[{n}] = 0..n− 1)

∀n · n ∈ N ⇒ fr(n) = g(n 7→ 0..n− 1 � fr)

The value of fr at n depends on its value on the set 0..n − 1,

FrSB is a function (an operator) which gives the recursive fonction

fr: fr = FrSB({i 7→ j|i ≥ 0 ∧ i < j} 7→ g)
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More Classical Recursion 8

If we instantiate FrSB1 with S,B := N, S type.

{i 7→ i+ 1|i ≥ 0} is a well-founded relation on N.

({i 7→ i+ 1|i ≥ 0}−1(n) = n− 1)

If fr = FrSB1({i 7→ i+ 1|i ≥ 0} 7→ f0 7→ f) we have

fr(0) = f0(0) and

∀n · n ≥ 0 ⇒ fr(n+ 1) = f(n+ 1 7→ fr(n))

using FrSB1 we define FrNB where

FrNB(f0 7→ f) = FrSB({i 7→ i+ 1|i ≥ 0} 7→ f0 7→ f)
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Convention 9

• Name of lemmas theorems are Cachan’s one

• I’ll not present all slides but deep explanations can be read after

(see Rodin workshop webpage)

• If I say less, greater it’s on the relation of a quasi-order (often g)

except on N
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Lemma1.3.1 10

If S 7→ g iswf andA ⊆ S then for all a inA there exists a minimum

x of a

∀S, g,A · S 7→ g ∈ wf ∧A ⊆ S⇒
(∀a · a ∈ A
⇒
(∃x · x ∈ A ∧ x 7→ a ∈ g ∧

(∀z · z ∈ A ∧ z 7→ x ∈ g⇒ x 7→ z ∈ g)))

x is less than a and if z is less than x there are equivalent
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Lemma1.3.1: Flavour of the proof 11

Proof: we define the following sequence

fr(0) · · · fr(n) fr(n+ 1) · · ·

where fr(0) = a and ran(fr) ⊆ A and

fr is a descending sequence

if two consecutive elements are equals then the sequence is station-

ary.

FrNB({0 7→ a} 7→ f) where f is
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Lemma1.3.1 12

(λn 7→ s · n > 0 ∧ (∃y · y ∈ A ∧ y 7→ s ∈ g ∧ s 7→ y /∈ g)|

ch({y|y ∈ A ∧ y 7→ s ∈ g ∧ s 7→ y /∈ g}))∪

(λn 7→ s · n > 0 ∧ (∀y · y /∈ A ∨ y 7→ s /∈ g ∨ s 7→ y ∈ g)|s)

On fr we prove that ran(fr) ⊆ A and fr is a descending se-

quence and if two consecutive elements are equals then the se-

quence is stationary. This sequence cannot always strictly decrease

so it is stationary at a minimal element of a
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Lemma1.3.2 13

∀S, g,A · S 7→ g ∈ wf ∧A ⊆ S⇒
(∃A0 ·A0 ∈ antichain(S 7→ g) ∧A0 ⊆ A∧

∀x · x ∈ A⇒ (∃a · a ∈ A0 ∧ a 7→ x ∈ g))

Proof: let h be {x 7→ y|x ∈ A∧y ∈ crclass(S 7→ g)∧x 7→ y ∈
g ∧ y 7→ x ∈ g}, h is a function from A to A ∩ crclass(S 7→ g)

the witness for A0 is

h[{x|x ∈ A ∧ (∀z · z ∈ A ∧ z 7→ x ∈ g⇒ x 7→ z ∈ g)}]
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Lemma1.3.? 14

We have used the previous lemma to prove the following one (refor-

mulation of the Lemma1.3.1 : existence of a minimum).

∀S, g,A · S 7→ g ∈ wf ∧A ∈ P 1(S)⇒
(∃m·m ∈ A∧(∀z·z ∈ A∧z 7→ m ∈ g⇒m 7→ z ∈ g))

This lemma is not present in Cachan lecture but is trivial we choose

the minimum in the previous antichain using the choice function

ch: chmin =

(λA·A ∈ P 1(S)|ch({m|m ∈ A∧(∀z·z ∈ A∧z 7→ m ∈ g⇒m 7→ z ∈ g)})
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Theorem 1.5 (Characterisations of wqo) 15

Let S 7→ g be a qo the following are equivalent:

1. S 7→ g ∈ wqo

2. ∀f · f ∈ N→ S⇒
(∃X ·X ⊆ N ∧ ¬finite(X)∧

(∀i, j ·i ∈ X∧j ∈ X∧i < j⇒f(i) 7→ f(j) ∈ g))

3. S 7→ g ∈ wf and ∀A·A ∈ antichain(S 7→ g)⇒finite(A)
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Theorem 1.5 (Characterisations of wqo) 16

Proof: (2)⇒(1) is trivial (1)⇒(3) is easy and (3)⇒(2) is more dif-

ficult. Many people use Ramsey’s theorem to prove this implication.

In Cachan authors propose an other interesting proof. To manage

this proof with the help of Cachan we instantiate in FrNB B by N

to obtain the operator (function) FrNN and use the choice function

cN (cN ∈ P 1(N)→ N and ∀s · S ∈ P 1(N)⇒ ch(s) ∈ s). Since

all antichain are finite there exists a k that (∀x ·x ≥ k⇒(∃j ·j >
x ∧ f(x) 7→ f(j) ∈ g)) We can define the following sequence fr

by

FrNN({0 7→ k} 7→ f) where f is
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Theorem 1.5 (Characterisations of wqo) 17

(λn 7→ s · n > 0 ∧ s ≥ k
|cN({j|j > s ∧ f(s) 7→ f(j) ∈ g}))∪

(λn 7→ s · n > 0 ∧ s ∈ 0..k − 1|s+ 1)

Then we prove by recurrence that (∀n · n ≥ 0⇒ fr(n) ≥ k) ,

(∀n · n ≥ 0⇒ fr(n) < fr(n+ 1)) and

(∀n · n ≥ 0⇒ (∀x · x ∈ 0..n⇒ f(fr(x)) 7→ f(fr(n)) ∈ g)))

X is ran(fr)
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Bad sequence 18

• When S 7→ g is well-quasi-ordered then all infinite sequence are

good

• f is a good sequence if

∃i, j · i ≥ 0 ∧ j > i ∧ f(i) 7→ f(j) ∈ g

• a bad sequence is not good

∀i, j · i ≥ 0 ∧ j > i⇒ f(i) 7→ f(j) /∈ g
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Bad sequence 19

Remark: if S 7→ g is qo but not in wqo the set of bad sequence is

not empty. Let BS be the set of bad sequence on S.

bs is minimal if

∀n, f · n ≥ 0∧ f ∈ N→ S⇒∧0..n− 1� f = 0..n− 1� bs∧
f(n) 7→ bs(n) ∈ g \ g−1

⇒
(∃i, j · i ≥ 0 ∧ j > i ∧ f(i) 7→ f(j) ∈ g))
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Existence of a minimal bad sequence 20

• Stangely the existence of the minimal bad sequence is not defined

and proved in Cachan lecture but the argument of the minimal bad

sequence is well used.

• When a qo is wf but not wqo a minimal bad sequence exists

(Nash-Williams).

• Let chmin be the function which give a minimum in a non empty

set when the quasi-order is in wf we have:

chmin = (λA · A ∈ P 1(S)|ch({m|m ∈ A ∧ (∀z · z ∈
A ∧ z 7→ m ∈ g⇒m 7→ z ∈ g)})
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Existence of a minimal bad sequence 21

bs is define step by step. we take all f in BS with the same prefix

than bs in construction.

bs(n) =

chmin({f ·f ∈ BS∧(∀i · i ∈ 0..n−1⇒f(i) = bs(i))|f(n)})

We can conclude that bs is a minimal bad sequence.

We need to prove that

{f · f ∈ BS ∧ (∀i · i ∈ 0..n− 1⇒ f(i) = bs(i))|f(n)} 6= ∅
22



Existence of a minimal bad sequence 22

We instantiate g in FrSB with

{n, k, b · n ≥ 0 ∧ k ∈ N 7→ S type ∧ 0..n− 1 ⊆ dom(k)∧
({f · f ∈ BS ∧ (∀i · i ∈ 0..n− 1⇒ f(i) = k(i))|f(n)} 6= ∅
⇒
b = chmin({f · f ∈ BS∧

(∀i · i ∈ 0..n− 1⇒ f(i) = k(i))|f(n)}))∧
({f · f ∈ BS ∧ (∀i · i ∈ 0..n− 1⇒ f(i) = k(i))|f(n)} = ∅
⇒
b = ch(S type))

| n 7→ k 7→ b}.

let bs be the sequence FrSB({i 7→ j|i ≥ 0 ∧ i < j} 7→ g) with our new g we
got for free

bs ∈ N→ S type and ∀n · n ∈ N ⇒ bs(n) = g(n 7→ 0..n − 1 � bs) then
we have
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Existence of a minimal bad sequence 23

∀n · n ∈ N ∧ {f · f ∈ BS ∧ (∀i · i ∈ 0..n− 1⇒ f(i) = bs(i))|f(n)} 6= ∅
⇒ bs(n) = chmin({f · f ∈ BS ∧ (∀i · i ∈ 0..n − 1⇒ f(i) =

bs(i))|f(n)})

Now we can prove by recurrence on n that

{f · f ∈ BS ∧ (∀i · i ∈ 0..n− 1⇒ f(i) = bs(i))|f(n)} 6= ∅

and then we can prove that

∀n · n ∈ N⇒
bs(n) = chmin({f · f ∈ BS ∧ (∀i · i ∈ 0..n− 1⇒ f(i) = bs(i))|f(n)})
and ∀n · n ∈ N ⇒ bs(n) ∈ S.

We can conclude that bs is a minimal bad sequence.
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A well-quasi-order under value of a minimal bad sequence 24

When a qo is wf but not wqo and bs a minimal bad sequence then

(g−1 \ g)[ran(bs)]
7→
((g−1 \ g)[ran(bs)] � g � (g−1 \ g)[ran(bs)]) ∈ wqo.

To prove this theorem we have followed the proof of the lemma 22

(Laszlo Székely and Éva Czabarka.).

Then ∀A ·A ⊆ (g−1 \ g)[ran(bs)]⇒A 7→ (A� g �A) ∈ wqo
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A well-quasi-order under value of a minimal bad sequence 25
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Exemple 26

In the following slides we have used the instantiation plugin (EBRP)

on our quasi-order context

• Cartesian Product

• Cartesian product of a finite family of quasi-orders

• Finite Words: Higmann’s Lemma
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Cartesian Product 27

Let A type and B type two carrier sets. By three instantiations :

1. S type, qo, wqo := A type, qoA,wqoA,

2. S type, qo, wqo := B type, qoB,wqoB

3. S type, qo, wqo := A type×B type, qoAxB,wqoAxB

we can obtain for free (above all wqoA)

qoA = {S 7→ g|S ⊆ A type ∧ . . .}

wqoA = {S 7→ g|S 7→ g ∈ qoA ∧ . . . ∃X . . .}

qoB = {S 7→ g|S ⊆ B type ∧ . . .}
28



wqoB = {S 7→ g|S 7→ g ∈ qoB ∧ . . . ∃i, j . . .}

qoAxB = {S 7→ g|S ⊆ A type×B type ∧ . . .}

wqoAxB = {S 7→ g|S 7→ g ∈ qoAxB ∧ . . . ∃i, j . . .}

then we can prove the two following theorems:

∀A, g,B, k ·A 7→ g ∈ qoA ∧B 7→ k ∈ qoB⇒
(A×B) 7→
{(a 7→ b) 7→ (a′ 7→ b′)|a 7→ a′ ∈ g ∧ b 7→ b′ ∈ k} ∈ qoAxB

∀A, g,B, k ·A 7→ g ∈ wqoA ∧B 7→ k ∈ wqoB⇒
(A×B) 7→
{(a 7→ b) 7→ (a′ 7→ b′)|a 7→ a′ ∈ g ∧ b 7→ b′ ∈ k} ∈ wqoAxB

The first one is trivial. For the second on the sequence of A × B the A part is a
sequence on A then there is a X where the sequence is monotone. If we restrict
the sequence on X for the B part we have an i and j where the sequence (on B)
is monotone then monotone on A×B.



Cartesian Product: Compromise: 28

With Rodin we cannot define a family of carrier set then if we want to define
n∏
i=1

Di

where all Di are qo (or wqo) all Di need to have the same carrier set. we instanti-
ate quasi-order with S type then with P(Z× S type) to obtain

qo = {S 7→ g|S ⊆ S type ∧ . . .}

wqo = {S 7→ g|S 7→ g ∈ qo ∧ . . . ∃i, j . . .}

wqo = {S 7→ g|S 7→ g ∈ qo ∧ . . . ∃X . . .)}

qoP = {S 7→ g|S ⊆ P(Z× S type) ∧ . . .}

wqoP = {S 7→ g|S 7→ g ∈ qoP ∧ . . . ∃i, j . . .})
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Cartesian Product: Compromise: 29

∀n, PS, Pg.n ≥ 0∧
PS ∈ 1..n→ P(S type) ∧ Pg ∈ 1..n→ (S type↔ S type)∧
(∀i · i ∈ 1..n⇒ PS(i) 7→ Pg(i) ∈ wqo)
⇒
{S|S ∈ 1..n→ S type ∧ (∀i · i ∈ 1..n⇒ S(i) ∈ PS(i))}
7→
{S 7→ S′|S ∈ 1..n→S type∧ (∀i · i ∈ 1..n⇒S(i) ∈ PS(i))∧

S′ ∈ 1..n→S type∧(∀i·i ∈ 1..n⇒S′(i) ∈ PS(i))∧
(∀i · i ∈ 1..n⇒ S(i) 7→ S′(i) ∈ Pg(i))} ∈ wqoP

n subsets PS(i) n relations Pg(i)

n wqos PS(i) 7→ Pg(i)
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Cartesian Product: Compromise: 30

Then we can use the previous theorem to prove the corollary 1.18 (before 1.17)
where all PS(i) are the same

∀n,X, Pg.n ≥ 0∧
X ⊆ S type ∧ Pg ∈ 1..n→ (X↔X)∧
(∀i · i ∈ 1..n⇒X 7→ Pg(i) ∈ wqo)
⇒
{S|S ∈ 1..n→X}
7→
{S 7→ S′|S ∈ 1..n→X ∧ S′ ∈ 1..n→X∧

(∀i · i ∈ 1..n⇒ S(i) 7→ S′(i) ∈ Pg(i)))} ∈ wqoP
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Cartesian Product: Compromise: 31

Now we can use the previous theorem to prove an abstraction of corollary 1.17
(Dikson’s lemma)

∀n,X, g.n ≥ 0∧
X 7→ g ∈ wqo
⇒
{S|S ∈ 1..n→X}
7→
{S 7→ S′|S ∈ 1..n→X ∧ S′ ∈ 1..n→X∧

(∀i · i ∈ 1..n⇒ S(i) 7→ S′(i) ∈ g))} ∈ wqoP

To prove the Dickson’s lemma Nn is wqo (1913), we instantiate the previous with
S type := Z and X, g := N,≤

∀n · n ≥ 0⇒
{S|S ∈ 1..n→ N}
7→
{S 7→ S′|S ∈ 1..n→ N ∧ S′ ∈ 1..n→ N∧

(∀i · i ∈ 1..n⇒ S(i) ≤ S′(i))} ∈ wqoP
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Finite words: Higman’s Lemma 32

Let A (typed by A type) be a set of the alphabet of words. A finite

words is a finite sequence:

Words = {w|∃n · n ≥ 0 ∧ w ∈ 1..n→A}.

In Cachan lecture they use an inductive definition (3 rules then 3

cases) for the order. Here we use an growing injection p

w w(1) w(2) w(3) w′ · w′(p(1)) · w′(p(2)) · w′(p(3)) ·

w(1) 7→ w′(p(1)) ∈ g w(2) 7→ w′(p(2)) ∈ g
w(3) 7→ w′(p(3)) ∈ g
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Finite words: Higman’s Lemma 33

If g is a quasi-order on A the the "quasi-order" on words is defined

by the following relation:

RelW =

{w 7→ w′|∃n,m · n ≥ 0 ∧ w ∈ 1..n→A∧
m ≥ 0 ∧ x′ ∈ 1..m→A∧
(∃p · p ∈ 1..n� 1..m∧

(∀i, j · i ≥ 1 ∧ j ∈ i+ 1..n

⇒ p(i) < p(j))∧
(∀i · i ∈ 1..n⇒ w(i) 7→ w′(p(i)) ∈ g)}

It’s an embedding qo on words.
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Finite words: Higman’s Lemma 34

Let A type a carrier set. By two instantiations :

1. S type, qo, wqo, sdc, wf := A type, qo, wqo, sdc, wf ,

2. S type, qo, wqo, sdc, wf :=

P(Z×A type), qoW,wqoW, sdcW,wfW
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Finite words: Higman’s Lemma 35

Higman’s lemma is:

∀A, g ·A 7→ g ∈ wqo⇒Words 7→ RelW ∈ wqoW

We instantiate cartesian product with:

qoA,wqoA,B type, qoB,wqoB, qoAxB,wqoAxB :=

qo, wqo, P(Z×A type), qoW,wqoW, qoxW,wqoxW

Remark we instantiate also with the corresponding sdc and wf
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Finite words: Higman’s Lemma 36

Proof: By contradiction. We assume Words 7→ RelW /∈ wqoW .

Words 7→ RelW ∈ qoW because A 7→ g ∈ qo.

Words 7→ RelW ∈ wfW because A 7→ g ∈ wf (A 7→ g ∈
wqo). If we take a sequence in sdcW (Words 7→ RelW ) the

length of words in this sequence decreases then is stationary.

After all words have the same length and with a theorem on cartesian

product this sequence cannot decrease infinitely.
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Finite words: Higman’s Lemma 37

We can now use the two theorems on minimal bad sequence. Let bs

this minimal bad sequence.

We have (∀i·i ≥ 0⇒bs(i) 6= ∅) (else bs is not bad) then all words

of the bad sequence have a first letter. Let {bs(n)(1)|n ≥ 0} the

set of the first letter of the range of bs.

We can construct the set Sfix of words where the first letter are

removed:

{w · w ∈ ran(bs)|(λi · i ∈ 1..max(dom(w))− 1|w(i+ 1))}
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Finite words: Higman’s Lemma 38

{bs(n)(1)|n ≥ 0} is well because include in A

Sfix is well using second theorem on bad sequence

{bs(n)(1)|n ≥ 0} × Sfix is also well using cartesian product

(λn · n ≥ 0|bs(n)(1)
7→ (λi·i ∈ 1..max(dom(bs(n)))−1|bs(n)(i+1))

is a good sequence and then bs is good also and cannot be bad !
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Conclusion 39

• Quasi-orders, their theorems and proofs are now in Rodin

• 4 weeks of effort

• Most of the proof are the same than those in Cachan lecture (2 lit-

tles errors discovered. No tools was used). Higmans and Kruskal

follow the Cachan principle but in a more abstract way.

• Thanks to the instantiation plugin. Without it this work will be more

difficult, less solid, almost impossible.
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Conclusion 40

Thank you Thierry for introducing me to quasi-orders world

Thank you Jean Goubault-Larrecq for your discussions on this topic

Thanks Guillaume Verdier and Laurent Voisin for the plugin
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Conclusion 41

Thanks Jean-Raymond !
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