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Outline ’

e End of november Thierry Coquand send me a paper on ordinals
where Kruskal's theorem is mentioned. | never hear on quasi-

orders. To train I've manage some proof on total order.

e At the beginning of december I've found ENS Cachan lecture on

this topic where proofs are well explained

S. Demri, A. Finkel, J. Goubault-Larrecq, S. Schmitz and PH. Sch-
noebelen. Well-Quasi-Orders For Algorithms MPRI Course 2.9.1
-2017/2018.



Outline 2

e Strangely theorems on minimal bad segence are not present but

used in Cachan lecture

e 4 weeks proof effort

e We have used our general recursive operator F'rS B to construct

sequences.



Definitions 3

Let S _type be a carrier set.
A quasi-order is a reflexive and transitive relation.
go ={S — g|S C StypeANg € S«SAS<id C gNng;g C g}
In a well-quasi-order all infinite sequences are good.
wqgo = {S — g|S — g € qoN
(Vf-feN—>S

—
(Fi,5-1>0AF>iA f(3) — f(4) €g))}



Definitions

sdc = (AS+—g-S+—gé€qol
{fIf E N— SA
(Vi,j -4 >0AG>i=f(j)— f(i) €g\g N}

wf={S+— g|S+— g€ qoAsdc(S+— g) =0}

antichain =

(AS+—g - S—geqo|l{A|[ACSA(AXx A)Ng Cid})



Definitions S

We assume the Axiom of Choice using a choice function. Remark in
a quasi order two element can be equivalent then we can define the
set of classes of a go.

class =
(AS — g.5 — g € qo|
Uz-z € S{{ylye SAz—yeEghy—x cg}t})

and using the choice function ch on S type (ch € P1(S type) —
S type and Vs - s € P1(S type) = ch(s) € s) we can have the
set of canonical representatives of classes.

crclass = (AS — g.S — g € qgo|ch|class(S — g)])



General recursion 6

We instantiate F'rSB with S, B := N, S type.

r is a well-founded relation on N. Let g be a function such that:
g € (N x (N-+ S type)) — S type.

There is a unique total function fr: fr € N — S type such that we
have:

Vnn €N = fr(n) =g(n ' [{n}] < fr)

The value of fr at n depends on its value on the set »—1[{n}],
FrSB is a function (an operator) which gives the recursive fonction
fr: fr = FrSB(r — g)



General recursion 7

We instantiate F'rSB with S, B := N, S type.

{i+— jli > 0 A4 < j}is awell-founded relation on N. Let g be a
function such that: g € (N x (N -+ S type)) — S type .

There is a unique total function fr: fr € N — S type such that we
have: ({i — jli > 0Ad < j} 1[{n}] = 0.n — 1)

Vn-néeN = fr(n)=g(n— 0.n—1< fr)
The value of fr at n depends on its value on the set 0..n — 1,

FrSB is a function (an operator) which gives the recursive fonction
frifr = FrSB({i— jli>0Ni<j}+— g)



More Classical Recursion

If we instantiate F'rSB1 with S, B := N, S _type.
{1 — ¢+ 1|z > 0} is a well-founded relation on N.
{i—i+1]s >0} 1(n)=n—1)

If fr = FrSB1({t—t+ 1|t > 0} — fO — f) we have
fr(0) = f£0(0) and
Vn-n>0 = friln+1)=f(n+1— fr(n))

using F'rSB1 we define F'rN B where
FrNB(fOo+— f)=FrSB({t— i+ 1|t > 0} — fO— f)



Convention 9

e Name of lemmas theorems are Cachan’s one

e |'ll not present all slides but deep explanations can be read after

(see Rodin workshop webpage)

e If | say less, greater it's on the relation of a quasi-order (often g)

except on N



Lemmai.3.1 10

IfS — giswfand A C S thenforall ain A there exists a minimum

x of a

VS, g, A-S—gewfNACS=
(Va-a € A
=X
(Jx-x € ANx—a€cgA
(Vz-z€ ANz—xEg= )))

x is less than a and if z is less than a there are



Lemma1i.3.1: Flavour of the proof 11

Proof: we define the following sequence

ff,a(()) fr(n) f'r(n—|—1)

where fr(0) = a and ran(fr) C A and
fris a descending sequence

If two consecutive elements are equals then the sequence is station-
ary.

FrNB({0— a} — f) wherefis



Lemmai.3.1 12

MMmM—s-n>0AN(Jy-yEANYy—~sEgNAs—y &g
ch({yly€e ANy~ seghs—y¢gg}))U
MMm—=s-n>0ANNMy-y&€ AVyr—>s&gVs—yeEg)ls)

On fr we prove that ran(fr) C A and fr is a descending se-
quence and if two consecutive elements are equals then the se-
guence is stationary. This sequence cannot always strictly decrease

so it is stationary at a minimal element of a



Lemmail.3.2 13

VS, g, A-S—>gewfNACS=
(Ag - Ag € antichain(S — g) N Ag C AA
Ve-x € A= (Jda-a € AgANa+— x € g))

Proof: let h be {x — y|lx € AAy € crclass(S — g)ANx — y €
gANym— x € g}, his afunction from Ato AN ecrclass(S — g)

the witness for Ag is

h[{x|lt €e ANNVz-z€ANz—xEg=x+— 2 Eg)}]



Lemma1i.3.? 14

We have used the previous lemma to prove the following one (refor-

mulation of the Lemma1.3.1 : existence of a minimum).

VS,g,A-S—gewfANAcP1(S)=
(Am-m € AN(Vz-z2 € AAz—> m Eg=>mr— z € g))

This lemma is not present in Cachan lecture but is trivial we choose
the minimum in the previous antichain using the choice function

ch: chmin =

(AA-A € P1(S)|ch({m|m € AAN(Vz-2 € AAz— m Eg=>m— z € g)})



Theorem 1.5 (Characterisations of wqo) 15

Let S — g be a go the following are equivalent:

1. S — g € wqgo

2. Vf-feEN—=S=
(X - X C N A —finite(X)A
(Vi,j-i € XAj € XNi <j=f(i) — f(J) € 9))

3. S—gewfandVA-A € antichain(S — g)=- finite(A)



Theorem 1.5 (Characterisations of wqo) 16

Proof: (2)=>(1) is trivial (1)=>(3) is easy and (3) =>(2) is more dif-
ficult. Many people use Ramsey’s theorem to prove this implication.
In Cachan authors propose an other interesting proof. To manage
this proof with the help of Cachan we instantiate in FrNB B by N
to obtain the operator (function) F'»IN N and use the choice function
cN (cN € P1(N) - NandVs-S € P1(N) = ch(s) € s). Since
all antichazin are finite there exists a k that (Vz-x > k=-(3j5:75 >
x A f(x) — f(3) € g)) We can define the following sequence fr
by

FrNN(({0+— k} — f)where fis



Theorem 1.5 (Characterisations of wqo) 17

(An—s:n>0As>k

[eN({3ld > s N f(s) — f(3) € g}))U
(An—s:n>0Ase€0..k—1|s+1)
Then we prove by recurrence that (Vn - n > 0= fr(n) > k),
(Vn-n>0= fr(n) < fr(n+ 1)) and

(Vn-n 2>0= (Ve -z € 0.n= f(fr(z)) — f(fr(n)) € g)))

X isran(fr)



Bad sequence 18

e When § — g is well-quasi-ordered then all infinite sequence are

good

e f is a good sequence if

Ji,j-i>0AF>iNAf(E)— f(F) Eg

e a bad sequence is not good

Vi,j-1>0AF>i=f(i)— f(j) &g



Bad sequence 19

Remark: if S — g Is qo but not in wqgo the set of bad sequence is

not empty. Let B.S be the set of bad sequence on S.
bs is minimal if

Vn, f n>0ANfEN->S==N0.n—1<1f=0..n—1<bs A

f(n) — bs(n) € g\g™!
—

(Fi,5- 1 >0AF >N (i) — F(J) € 9))



Existence of a minimal bad sequence 20

e Stangely the existence of the minimal bad sequence is not defined
and proved in Cachan lecture but the argument of the minimal bad
sequence is well used.

e When a go is wf but not wgo a minimal bad sequence exists
(Nash-Williams).

e Let chman be the function which give a minimum in a non empty
set when the quasi-order is in w f we have:

chmin = (M - A € P1(S)|ch({m|m € AAN (Vz .2z €
ANz— meg=>mw—z€g)})



Existence of a minimal bad sequence 21

bs is define step by step. we take all f in BS with the same prefix

than bs in construction.

bs(n) =

chmin({f-f € BSA(Vi-1 € 0.n—1= f(2) = bs(z))|f(n)})

We can conclude that bs is a minimal bad sequence.

We need to prove that

{f-feBSAMNi-i€0.n—1= f(1) =bs(i))|f(n)} # 2



Existence of a minimal bad sequence 22

We instantiate g in F'rS B with

{n,k,b-n>0ANk €N+ Stype AN0.n —1 C dom(k)A
{f-fEBSANMi-i€0.n—1= f(i) =k())|f(n)} #2
—
b=chmin({f-f € BSA
(Vi-i €0.n—1= f(i) = k()|f(n)}))A
{f-fE€BSA(Vi-i€0.n—1= f(i) = k())|f(n)} =2
—
b = ch(S type))
| n— k+— b}.

let bs be the sequence FrSB({i — j|i > 0 Ai < j} — g) with our new g we
got for free

bs € N— StypeandVn:-n € N = bs(n) = g(n — 0..n — 1 < bs) then
we have



Existence of a minimal bad sequence 23

Vn-neNA{f-feBSAMi-1€0.n—1= f(i) =bs(2))|f(n)} #2
= bs(n) =chmin({f-f € BSA(Vi-12 € 0.n—1= f(1) =

bs(i))|f(n)})

Now we can prove by recurrence on n that

{f-feEBSA(Vi-i€0.n—1= f(1) =bs(d))|f(n)} # 2

and then we can prove that

YVn-n €N =
bs(n) =chmin({f-fE BSA(Vi-1€0.n—1= f(z) =bs(2))|f(n)})
andvVn-n € N = bs(n) € S.

We can conclude that bs is a minimal bad sequence.



A well-quasi-order under value of a minimal bad sequence 24

When a go is w f but not wgo and bs a minimal bad sequence then

(971 \ g)[ran(bs)]
—>

(g7 '\ g)[ran(bs)] < g > (g~ '\ g)[ran(bs)]) € wqo.

To prove this theorem we have followed the proof of the lemma 22

(Laszlo Székely and Eva Czabarka.).

ThenVA.- A C (g1 \ g)[ran(bs)]| = A — (A<g> A) € wqo



A well-quasi-order under value of a minimal bad sequence

25

Lemma 22. Assume that (A, <) is well-founded quasi-order, in which xo,z,, 23, ... is @
minimal bad sequence. Consider

VY = {I = A : i such that I‘JIIII'}

(note the strict inequality in the formula!). Then' Y =0 or (Y, <D |y) is a WQO.

Proof. If Y # () and (Y, < |y) is not a WQO, then, based on Lemma 19, select a minimal
bad sequence yg, ¥y, ¥a, ... for (Y, < |y). By the construction of Y,

Vi > 03i" > 0 such that y; 2 x,.

Select the smallest natural number ¢ that comes up in this way, and select the smallest
index 7 that produces this ¢'. Now y;, 4i11,¥is2, ... is still a bad sequence for (Y, < |y ), as
it is an infinite subsequence of a bad sequence. By part (iii) of the Proposition above,
Yi, Yis1s Yisra, ... 1s also a bad sequence in (A, ). If «" = 0, the bad sequence v;., yii1, Yisa, ...
contradicts the minimality of the bad sequence xy, 1, 75, ... by y; < 4.

Assume now i’ > 1. We are going to show that

Loy Ty eey Ty Yiy Yie1s Yivr2, ...

is a bad sequence in (A, <), which will contradict the minimality of the bad sequence
T, Ty, T2, ..., as Y; 4 ry. Indeed, no pair in the x part of the sequence and no pair in the
y part of the sequence would fail badness. The only possible problem is if there is an z,,
with m < ¢ —1 and vy, with n > i such that z,,, < vy,. As y, € Y, there is an n’ such that
Yn <4 Tnr. By the choice of i/, m < i — 1 < i <n' and z,, < 2, contradicting the badness
of the xg, z1, 72, ... sequence. []



Exemple 26

In the following slides we have used the instantiation plugin (EBRP)

on our quasi-order context

e Cartesian Product

e Cartesian product of a finite family of quasi-orders

e Finite Words: Higmann’s Lemma



Cartesian Product

27

Let A_type and B _type two carrier sets. By three instantiations :

1. S_type, go, wqo := A _type,qoA, wqoA,

2. S_type, go, wqo := B _ type,qoB,wqoB

3. S_type, qgo, wqo := A type X B _type,qoAxB,wqoAxB

we can obtain for free (above all wgoA)
qoA = {S — g|S C A typeAN...}

wqgoA ={S—g|S+— g€ qgoAAN...dX ...}

qoB = {S — g|S C B type N ...}



wqoB = {S+— g|lS+—~g€qoBA...Ji,5...}
qoAxB = {S — g|S C A type X B type A ...}
wqoAxB = {S+— g|S+— g € goAxB A ...Ji,5...}
then we can prove the two following theorems:

VA,g.B,k-A+— g € qoANB+— k € goB=-
(A X B) —
{(a—b)— (a/ = b)la—~a €egArb— b €k} € qgoAxB

VA,g,B,k-A+— g € wqgoANB+— k € wqgoB=-
(A X B) —
{(a—~b)— (0’ = b)|la—a €gNnb— b € k} € wgoAzB

The first one is trivial. For the second on the sequence of A X B the A partis a
sequence on A then there is a X where the sequence is monotone. If we restrict
the sequence on X for the B part we have an ¢ and 3 where the sequence (on B)
is monotone then monotone on A X B.



Cartesian Product: Compromise: 28

n
With Rodin we cannot define a family of carrier set then if we want to define H D;
i=1
where all D; are qo (or wqo) all D; need to have the same carrier set. we instanti-

ate quasi-order with S type then with P(Z x S type) to obtain
go = {S — g|S C StypeA...}
wqgo={S—g|lS—g€E€qoNn...Ti,5...}
wgo={S—g|S—g€qgoNn...3X...)}

qoP = {S — g|S CP(Z x S type) A...}

wqoP = {S+— g|S— g€ qoPA...Ji,5...})



Cartesian Product: Compromise: 29

vn, PS, Pg.n > 0A
PS ¢ — P(S type) A Pg € — (S type <> S type) A
(Vi-i € = PS(1) — Pg(i) € wqo)
=
{S|S € — S type N\ (Vi-1i € = S(2) € PS(2))}
—>
{S— S’|S € — S type N\ (Vi-i € = S(2) € PS(2))N
S’ e — S typeA(Vi-i € =S8'(1) € PS(2))A
(Vi-1 € = S(i) — S’(1) € Pg(i))} € wqoP

subsets P.S(z) n relations Pg(z)

wqos PS(1) — Pg(1)



Cartesian Product: Compromise: 30

Then we can use the previous theorem to prove the corollary 1.18 (before 1.17)
where all PS(7) are the same

vn, X, Pg.n > 0OA
X C Stype A Pg € 1.n = (X < X)A
(Vi-i € 1.n = X — Pg(i) € wqo)
=
{S|S €l1l.n—> X}
—>
{S—SN1Sel.n—>XAS €l1l.n— XA
(Vi-i € 1.n= S(z) = S'(i) € Pg(i)))} € wqgoP



Cartesian Product: Compromise: 31

Now we can use the previous theorem to prove an abstraction of corollary 1.17
(Dikson’s lemma)

Vn, X,g.n > 0A
X — g € wqgo
=
{S|S €1.n — X}
—>
{S— SN1Sel.n—>XAS€l.n—> XA
(Vi-i € l.n= S(i) — §'(3) € g))} € wgoP

To prove the Dickson’s lemma N is wqgo (1913), we instantiate the previous with
S type := Zand X,g := N, <

Vn-n > 0=
{S|S € 1..n — N}
—>
{S— S'1Se1.n—>NAS €1..n—NA
(Vi-i€1l.n= S(z) < S’(41))} € wqgoP



Finite words: Higman’s Lemma 32

Let A (typed by A _type) be a set of the alphabet of words. A finite

words is a finite sequence:

Words = {w|dn-n > 0Aw € 1..n — A}.

In Cachan lecture they use an inductive definition (3 rules then 3

cases) for the order. Here we use an growing injection p

w | w(l) | w(2) w’ [ -] w(p(1)) |- | w(p(2)) |-

w(l) = w'(p(1)) € g w(2) = w'(p(2)) € g
— cg



Finite words: Higman’s Lemma 33

If g is a quasi-order on A the the "quasi-order" on words is defined

by the following relation:

RelW =
{w— w|3In,m-n > 0Aw € 1l..n — AA
m>0Ax €1l.m — AN
(Ip-p € 1l.n— 1.mA
(Vi,7-1>1ANj €1+ 1..n
= p(i) < p(3))N
(Vi-i1€l.n=w() — w'(p)) € g)}

It's an embedding go on words.



Finite words: Higman’s Lemma

34

Let A type a carrier set. By two instantiations :

1. S type, go, wqgo, sdec, wf := A type, go, wqo, sdec, wf,

2. S type, go, wqo, sdc, wf :=
P(Z x A_type), qgoW, wqoW, sdcW, wfW



Finite words: Higman’s Lemma 35

Higman’s lemma is:

VA,g- A+— g € wgo = Words — RelW € wqoW

We instantiate cartesian product with:

qoA,wqoA, B type, goB,wqoB, qoAxB, wqoAxB :=
qo, wqo,P(Z X A _type), qgoW,wqoW, qgoxW, wqoxW

Remark we instantiate also with the corresponding sdec and w f



Finite words: Higman’s Lemma 36

Proof: By contradiction. We assume Words — RelW & wqoW .
Words — RelW € qoW because A — g € qo.

Words — RelW € wfW because A — g € wf (A — g €
wqo). If we take a sequence in sdcW (Words — RelW) the

length of words in this sequence decreases then is stationary.

After all words have the same length and with a theorem on cartesian

product this sequence cannot decrease infinitely.



Finite words: Higman’s Lemma 37

We can now use the two theorems on minimal bad sequence. Let bs

this minimal bad sequence.

We have (Vi-i > 0=-bs(i) # @) (else bs is not bad) then all words
of the bad sequence have a first letter. Let {bs(n)(1)|n > 0} the

set of the first letter of the range of bs.

We can construct the set S fix of words where the first letter are
removed:
{w:w € ran(bs)|(Az -2 € 1..max(dom(w)) — 1|w(z+ 1))}



Finite words: Higman’s Lemma 38

{bs(n)(1)|n > 0} is well because include in A

S fix is well using second theorem on bad sequence

{bs(n)(1)|n > 0} x S fixis also well using cartesian product

(An - n > 0|bs(n)(1)
— (Az-2 € 1..max(dom(bs(n)))—1|bs(n)(i+1))

IS a good sequence and then bs is good also and cannot be bad !



Conclusion 39

e Quasi-orders, their theorems and proofs are now in Rodin

e 4 weeks of effort

e Most of the proof are the same than those in Cachan lecture (2 lit-
tles errors discovered. No tools was used). Higmans and Kruskal
follow the Cachan principle but in a more abstract way.

e Thanks to the instantiation plugin. Without it this work will be more
difficult, less solid, almost impossible.



Conclusion 40

Thank you Thierry for introducing me to quasi-orders world

Thank you Jean Goubault-Larrecq for your discussions on this topic

Thanks Guillaume Verdier and Laurent Voisin for the plugin



Conclusion

41

Thanks Jean-Raymond !



