
Project Allocation with Event-B and ProB

Thai Son Hoang[0000−0003−4095−0732], Abdolbaghi
Rezazadeh[0000−0002−0029−469X], and Michael Butler[0000−0003−4642−5373]

School of Electronics and Computer Science (ECS), University of Southampton, U.K.
{t.s.hoang,m.j.butler}@soton.ac.uk, ra3@ecs.soton.ac.uk

Abstract. This short paper presents a formal development in Event-B
for allocating student projects. Using Event-B as the modelling language,
we precisely specify the requirements of the allocation problem and de-
velop an algorithm satisfying the requirements. We then use ProB to
“execute” the Event-B specification to perform the allocation. The for-
mal model and the ability of ProB to execute the formal model help us
to ensure the fairness of the allocation process with the possibility of
extending the algorithms to consider further requirements.

Keywords: Event-B · ProB · Project Allocation

1 Introduction

Annually, we must allocate our project students (i.e., Year 3 or MSc students)
to potential supervisors. This is a challenging and cumbersome task for several
reasons: (1) the continual growing of the number of students, (2) each staff mem-
ber can supervise multiple students, (3) student belong to a specific programme
must work on a project relevant to the programme, (4) the allocation has to con-
sider staff’s loading constraints, (5) the allocation will try to balance the staff’s
load as much as possible (e.g., it is undesirable to have a staff with 3 students
while another staff has no students).

To facilitate the allocation process, a separate system (called “Choice”) was
developed for the students to input their project preferences. Each staff will
add a list of sample project topics to the Choice system (together with the
programmes that are relevant for those projects). The students can then select
(up to 12) options from the systems as their preferences. These preferences are
then used as the input for the allocation process, which is the discussion of this
paper.

Previously, an existing software was used to automate this project allocation
process. However, in recent years, the software performance does not match the
expectation as the new programs are added and the cohort’s size increases. This
often results in some manual allocation process, which is (unsurprisingly) time-
consuming and unreliable. As this software is no longer maintained, we develop
a formal specification that can be used for allocation directly, but also adaptable
to future changes in the allocation process.



2 T.S.Hoang et al.

The remainder of the paper is structured as follows. Section 2 discusses the
background on matching algorithms and the Event-B formal method. Section 3
then presents an allocation algorithm and its formalisation. Section 4 gives some
evaluation of the result of the allocation. Section 5 summarises and discusses
future work.

2 Background

2.1 Matching Algorithms

Matching problems and algorithms are well-studied topics in computer science.
One of the most well-known matching algorithms is the Gale–Shapley algorithm
for the stable marriage problem [3]. A generalised version of the stable marriage
problem is the college admissions problem [3]. Here, the matching is done be-
tween applicants and colleges, where each college can accept multiple applicants
up to a certain limit. The algorithm involves several rounds, each round contains
a proposal phase and an acceptance phase.

proposal : Each unallocated applicant applied to the most-preferred college to
which they have not yet applied.

acceptance : Each college with quota q will (tentatively) accept the top-q ap-
plicants (or all applicants if the number is less than q), amongst the new
applicants and the applicants that they have (tentatively) accepted, and re-
ject the rest. Notice that potentially, some already accepted students might
be rejected if the college prefers some new applicants.

The process is repeated until every student is on the acceptance list or has been
rejected by all colleges to which they applied.

There are similarities and differences between the college admissions problem
and our project allocation problem.

– In the college admissions problem, both applicants and colleges have a pref-
erence list of each other. In our project allocation problem, the students has
the preference list of the staff (by ranking the topics proposed by the staff),
but the staff do not rank the students.

– In the college admissions algorithm [3], there may be some applicants who
will not be allocated due to their low ranking from the colleges. For our
project allocation problem, the goal is to allocate all students to a supervisor.

– In the college admissions algorithm, applicant has to give their preferences.
We have to handle a small number of students who have not entered their
preferences.

– In both problems, there are limited capacities for colleges or staff. However,
in the college admissions algorithm, there are no considerations for load
balancing amongst the colleges. We have to balance the staff loading to
ensure that the allocation of students is fair. We consider this an extended
goal for future work.



Project Allocation with Event-B and ProB 3

2.2 Event-B Modelling Method and Tools

Event-B [1] is a state-based formal modelling method based on first-order logic
and set theory. An Event-B model contains contexts and machines. Contexts
specify the static part of the model, including carrier sets (types), constants, and
axioms that constrain them. Machines specify the dynamic part of the model
and include variables, invariants, and events. An Event-B machine corresponds
to a discrete transition system, where the states and transitions are represented
by variables and guarded events, accordingly.

Rodin [2] is an Eclipse-based tool that supports the Event-B modelling lan-
guage. Verification of the consistency of the Event-B models can be done by
proving the generated obligations using theorem provers or by model checking.
We also utilise here an extension of Rodin called CamilleX [4] to support textual
input for Rodin.

ProB [5] is a model checker for Rodin. ProB uses constraint solving to analyse
the model. Furthermore, we can also validate the Event-B models by animating
the models with ProB. This paper also utilises this feature of ProB for “execut-
ing” the project allocation algorithm.

3 Formal Development for Project Allocation

3.1 Requirements for Project Allocation

We assume that we have a set of programmes (ASM 1). Furthermore, each stu-
dent is associated with exactly one programme that they are studying, however
each staff can supervise projects in different programmes.

ASM 1 There is a finite set of programmes

ASM 2 There is a finite set of students

ASM 3 There is a finite set of staff

ASM 4 Each student is associated with a programme

ASM 5 Each staff is associated with a set of programmes

We assume that prior to our allocation, we have information about the stu-
dent preferences of the staff (we omit the information about the topics here).

ASM 6 Students have a preference ranking (without duplication) of the supervisors

Each staff has a certain capacity for supervision, indicating the maximum
number of students that they can supervise.

ASM 7 Each staff has a maximum number of students that they can supervise

Evidently, the project allocation cannot be guaranteed to be successful, e.g.,
when there are insufficient staff. However, we have the following requirements
for allocations.



4 T.S.Hoang et al.

REQ 8 A successful allocation must ensure that every student is allocated to a super-
visor.

REQ 9 A student’s programme must match one of the supervisor’s indicated pro-
gramme

REQ 10 If a student has some preferences, then the allocated supervisor must be on
their preference list

Notice that we omit the requirement about load-balancing here because it con-
flicts with the above requirements. Nevertheless, our algorithm will try to allo-
cate as many students as possible.

3.2 An Algorithm for Project Allocation

As discussed in Section 2.1, we need to adapt the existing algorithm for our
project allocation problem. The algorithm contains three stages.

Greedy Allocation Stage : In this stage, we use a modified version of the college
admissions algorithm to allocate the students to their preferred supervisor.
The process also contains two phases, i.e. proposal and acceptance, but there
will be no rejection of already allocated students here.
proposal phase : Each unallocated student applied to the most-preferred su-

pervisor to whom they have not yet applied.
acceptance phase : Each supervisor with capacity c will accept the c− n new

applicants, where n is the number of the current accepted students for
that supervisor (or all new applicants if the number of them is less than
c− n), and reject the rest. Notice that, once allocated, no students will
be removed from their allocation in this stage (this is different from the
college admissions algorithm).

The process repeats until either all students are allocated (successful allo-
cation) or all the unallocated students’ preferences have been taken into
account. In the case of an unsuccessful allocation, we move to the Swapping
Allocation Stage.

Swapping Allocation Stage : In this stage, we change the student allocation so that
we can maximise the number of allocated students. This process involves an
allocated student as and unallocated student us, satisfying:
– The allocated supervisor aS for as is on the preference list of us.
– as has another preferred supervisor pS that they have not yet applied to

and pS still has a capacity for supervision.
In this case, as swaps aS for pS as the supervisor and aS will become the su-
pervisor of us. We repeat this swapping until either all students are allocated
(successful allocation) or we cannot find an allocated student to perform a
swap for an unallocated student. Notice that at this point, any unallocated
student with staff preferences will require manual allocation.

No-preference Allocation Stage : This stage tries to allocate the students without
preferences to a supervisor. Here, the chosen staff will be a staff for the pro-
gramme that the student studies and have the most capacity for supervision.
The process finishes when all students are allocated (successful allocation)
or if there are some unallocated students.



Project Allocation with Event-B and ProB 5

3.3 Formal Development

We give a brief overview of the formalisation of the problem and the algorithm
using Event-B here.

The assumptions correspond to various sets and constants in different con-
texts, with appropriate axioms.

set PROGRAMME
axiom@axm1: finite(PROGRAMME) // ASM1
set STAFF
axiom@axm2: finite(STAFF) // ASM3
constant staff programmes : STAFF↔ PROGRAMME
axiom@axm3: dom(staff programmes)= STAFF // ASM5
set STUDENT
axiom@axm5: finite(STUDENT) // ASM2
constant student programme : STUDENT→ PROGRAMME // ASM4
theorem@axm9: finite(student programme)
constant student preferences : STUDENT→ (STAFF 7→N) // ASM6
constant staff limit : STAFF→N // ASM7

Greedy Allocation Stage: This stage is modelled by events such as propose,
accept, decline and phase/stage-transition events change to acceptance, change to propose,
and move to swapping stage. For example, event propose is specified as follows.

event propose
any student staffwhere
@grd0: phase= Proposing
@grd1: student /∈ dom(allocated) // student is unalocated
@grd2: student /∈ dom(proposes) // student has not yet make a proposal
// The staff is the top remaining choice for the student
@grd3: staff∈ dom(student remained choice(student))
@grd4: ∀other staff · other staff∈ dom(student remained choice(student))

⇒ student remained choice(student)(other staff)≤ student remained choice(student)(staff)
then
@act2: proposes(student) := staff
end

Other events are omitted here due to space constraints.

Swapping Allocation Stage : This phase is modelled by a single event, namely
swap corresponds to the algorithm in Section 3.2, with some stage-transition
event move to no preference allocation.

event swap
any student staff allocated student free staff
where
@grd0: process= SwappingAllocation
@grd1: student /∈ dom(allocated)
@grd2: staff∈ dom(student preferences(student))∧ staff 7→ student∈ dom(staff preferences)
@grd3: allocated student∈ dom(allocated)∧ allocated(allocated student)= staff
@grd4: free staff∈ dom(student remained choice(allocated student))
@grd5: staff capacity(free staff) ̸= 0
then
@act1: allocated := allocated◁− {student 7→ staff, allocated student 7→ free staff}
@act2: staff capacity(free staff) := staff capacity(free staff)− 1
end

No Preference Allocation Stage : This phase is modelled by a single event, namely
no preference allocation corresponds to the algorithm in Section 3.2. We omit the
details of the event here.



6 T.S.Hoang et al.

Finally, at any stage, if all students are allocated, then we consider the process
finished successfully (REQ 8). Furthermore, the following invariants ensure the
consistency of the immediate allocation, i.e., (REQ 9) and (REQ 10).

@inv1: ∀ student· student∈ dom(allocated)⇒ student programme(student)∈ staff programmes[{
allocated(student)}]

@inv2: ∀ student· student∈ dom(allocated)∧ dom(student preferences) ̸=∅⇒
allocated(student)∈ dom(student preferences(student))

4 Evaluation

After developing the formal models specifying the algorithm, we utilise the ca-
pability of ProB to “run” the model on the actual data.

– We wrote a Python script to convert students’ preferences and staff’s pro-
grammes in CSV format to extended contexts to provide the actual values
for sets and constants, e.g., STUDENT, STAFF, student programme, etc. The
output of the Python script is in CamilleX textual format for Event-B model.

– The algorithm will terminate (either successfully or unsuccessfully) when the
formal model is deadlock. As a result, we use ProB to check for deadlock-
freeness and the trace that ProB provided as a counter-example will essen-
tially be the trace for the project allocation. In particular, we use ProB in
depth-first search to avoid exploring the different traces of the model. This
helps ProB to speed up considerably compared to the default search strategy.

– We then extract that last state of the ProB check to get the allocation data.

We used this approach for the allocation for 244 MSc students and 134 staff,
each staff having a capacity of 3 students.

– After the Greedy Allocation Stage, 236 students were allocated.
– After the Swapping Allocation Stage, 5 more students were allocated
– After the No Preference Allocation Stage, 3 more students were allocated

(all 3 students did not input their preferences).

5 Conclusion

This paper presents an approach for formally specifying an algorithm for project
allocation and executing the formal model on actual data using ProB. The ap-
proach successfully allocates a large cohort of MSc students to one of their pref-
erences. Compared to the previous year, when the allocation was done manually,
we managed to release the project allocation two weeks earlier.

In the future, we want to use this approach as the core for the new project
allocation software and extend the feature further (e.g., taking into account
the topics). Taking into account the load-balancing constraint for the staff will
require the relaxation of some constraints. At the moment, this process is done
manually. Furthermore, we want to prove the properties of the algorithm, in
particular, to discover the various invariants for proving the consistency of the
formal model. Finally, on the tooling side, a more integrated approach with the
Python pre/post-processing, Rodin static analyser, and ProB model checker is
required.



Project Allocation with Event-B and ProB 7

References

1. Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

2. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad
Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and reasoning in
Event-B. International journal on software tools for technology transfer, 12(6):447–
466, 2010.

3. David Gale and Lloyd S. Shapley. College admissions and the stability of marriage.
The American Mathematical Monthly, 69(1):9–15, January 1962.

4. Thai Son Hoang, Colin F. Snook, Dana Dghaym, Asieh Salehi Fathabadi, and
Michael J. Butler. Building an extensible textual framework for the rodin plat-
form. In Paolo Masci, Cinzia Bernardeschi, Pierluigi Graziani, Mario Koddenbrock,
and Maurizio Palmieri, editors, Software Engineering and Formal Methods. SEFM
2022 Collocated Workshops - AI4EA, F-IDE, CoSim-CPS, CIFMA, Berlin, Ger-
many, September 26-30, 2022, Revised Selected Papers, volume 13765 of Lecture
Notes in Computer Science, pages 132–147. Springer, 2022.

5. Michael Leuschel and Michael Butler. Prob: an automated analysis toolset for
the b method. International Journal on Software Tools for Technology Transfer,
10(2):185–203, 2008.


	Project Allocation with Event-B and ProB

