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Algebraic State Transition Diagram (ASTD) [8] is a formal, graphical, state-
based modeling language designed for the development of complex critical sys-
tems [10,1]. It provides a set of process algebra operators to compose hierarchical
state machines, streamlining modularity in system design. Furthermore, its op-
erational semantics defines transition rules for each ASTD operator.

Despite advances in incorporating features such as local state variables [13]
and real-time [2], ASTD tool support (cASTD [13,14], pASTD [4], ASTD2EB [7,9])
is based on ad hoc model transformation that do not preserve the original struc-
ture of ASTDs. Each technology offers custom tools for ASTD, which can in-
troduce new errors and complicate the integration of multiple tools on the same
model. Moreover, it is essential to identify conditions characterizing well-defined
ASTD, and to establish new properties (e.g., liveness) taking into account their
operational semantics. In fact, our main objective is to seek a generic approach
for formally reasoning on ASTD models.
The meta-model. In this context, we introduce EB[ASTD], an algebraic meta-
model of ASTD formalizing its operational semantics [6]. This ground model, in-
spired from the EB4EB methodology [11,12], relies on a deep modelling strategy
that integrates the ASTD syntax and semantics as Event-B algebraic theories,
as described below. The whole model can be found at https://www.irit.fr/
EBRP/software/

THEORY ASTDStruct
TYPE PARAMETERS St ,Ev , Var
DATA TYPES
ASTD(St ,Ev ,Var )
constructors

Elementary ( . . .)
Automaton ( . . .)
Sequence ( . . .)
Closure ( . . .)
Guard ( . . .)

OPERATORS
Invariant_WellCons predicate
Scope_WellCons predicate
. . .
ASTD_WellCons predicate
(a : ASTD(St,Ev ,Var) ,accVar : P(Var))

Listing 1. ASTD syntax

a) Syntax and static semantics. Listing 1
presents the ASTDStruct Event-B the-
ory, which describes ASTD in a denota-
tional style. Each compositional operator
of ASTD is included in the datatype as
a constructor, while component access is
handled through destructors. Several pred-
icate operators define the static seman-
tics for ASTD to verify well-instantiation.
These operators can generate proof obliga-
tions (POs) automatically by setting them
as theorem in the Event-B context.
b) Operational semantics. Listing 2 defines
the operational semantics of ASTD.

https://www.irit.fr/EBRP/software/
https://www.irit.fr/EBRP/software/


NextState expression (
astd : ASTD(St,Ev ,Var) ,σ : Ev ,
curr : ASTDState(St,Var))

well−definedness condition ...
recursive def init ion
case astd :

Elementary(inv) => ...
Automaton(i, f, ..., inv ,mapping) =>

aut1 ∪ aut2 ∪ aut3
Sequence(fst, snd, attr , initAttr , inv)

=> . . . .
Closure(...) => . . .
Guard(...) => . . .

Listing 2. ASTD Transitions rules

Several transitions rules are defined
for each ASTD operator, and these
rules are incorporated in the operator
NextState. Given an ASTD astd , its cur-
rent state curr and a triggered event σ, a
set of all possible next states is returned
according to the operational semantics.
For example, in the case of Automaton,
three enumerated set auti defined to rep-
resent the transition rules for auti.
c) Two instantiation mechanisms. We
use both the deep and shallow instantiation mechanisms. The deep approach
models ASTD as an instance of the meta-model, encoding it as a first-class
object. In contrast, the shallow approach leverages the operational semantics of
ASTD to generate the initial state and manage state changes. This enables using
the ProB model checker and the visual animator VisB for validating ASTDs.
Proof-based reasoning . The framework enables the definition of proof obliga-
tions, checking their soundness and generating them. We illustrate this approach
using POs for state invariants defined in pASTD [5]. Their POs lacks a formal
justification, i.e. that they adequately represent their associated property. To
achieve this, we encode the specification of POs in the form of properties on
traces, allowing us to demonstrate that ASTD ⊢ POs =⇒ Spec[PO]_On_Tra-
ces. For instance, invariant preservation corresponds to ASTD ⊢ POpASTD =⇒
∀tr ∈ Traces(ASTD), INV (tr(i)), i.e., that every execution of the ASTD sat-
isfies the invariant when POpASTD hold. Three theories are defined for this.

thm_of_PO_Correctness :
∀astd, tr ·
astd ∈ ASTD(St,Ev ,Var)
∧ASTD_WellCons(astd, ∅)
∧tr ∈ N 7→ ASTDState(St,Var)
∧IsATrace(astd, tr)
∧POpASTD (astd, ...)
⇒
(∀i · i ∈ dom(tr)⇒INV (astd, tr(i)))

Listing 3. Proof of soundness

a) Proof obligations. The definition and the
generation process is straightforward. It re-
quires the direct definition of the PO within the
ASTDPO theory operator. Then the operator
is used as theorem in Event-B context, entailing
PO generation. b) Trace-based semantics. The
definition of traces exploits the operational se-
mantics of ASTD in the theory ASTDTraces.
c) Soundness. The last theory ASTDCorrectness leverages the specification of
invariant satisfaction for a given state (INV (tr(i)). Finally, the soundness theo-
rem is defined and proved in Listing 3. This proof highlighted some bugs in the
manual specification [5,3]. Interested reader can consult [6] for more details.
Conclusion. This framework offers an explicit manipulation of ASTD concepts
as first-class citizens. It features a proof-based mechanism that enables reason-
ing on specific ASTDs defined as instances of this meta-model. The tool is built
upon the Rodin platform, which provides automated proof obligation generation,
automatic and interactive verification, graphical animation, and model checking
of ASTDs. Overall, the EB[ASTD] framework provides a sound foundation for
proving properties about ASTDs and operates effectively within the Rodin plat-
form, which is specifically designed for managing ASTD models and proofs.
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