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EB4EB [5,6], standing for Event-B for Event-B, is a framework that sup-
ports the formalisation of Event-B [1] models using first-order logic (FOL) and
set-theory. This framework can handle machine elements as formulas, thus the
EB4EB framework enables the definition of new specific proof obligations and
analyses [8,4,7]. In the earlier formalisation of the EB4EB framework only states
and events were handled, limiting the expressive reasoning power of the frame-
work. In this paper, we present an overview of an extension of the EB4EB
framework to support parameterised events [9], an important feature of Event-
B. This extension is not straightforward in EB4EB. Indeed, the typing system
supported by Event-B theories [2,3] is not rich enough to describe such extension
in a constructive manner as for the other Event-B features formalised in EB4EB.
The proposed solution, described in this paper, consists in defining an axiomatic
formalisation of event parameters definitions.

EB4EB Extension. Listing 1 presents the extended version of the EB4EB
meta-theory. The EvtBTheoPar includes a new type parameter, PARAM, for ab-
stracting the type of event parameters. The main difference between the for-
mer EB4EB meta-theory and this one is the definition of the destructors. The
Machine data-type still has the same signature as well as a single construc-
tor (Cons_machine); however, this constructor only has two arguments (and
thus two destructors): Event identifying the events of the machine and State
identifying its state.

The usual destructors of the machine data-type (Inv, Progress, etc...) are
defined as axiomatic operators, so that they can be free from the limitation of
data-types regarding type parameters.

The PARAM is defined as a type bound in the operators but not in the
Machine data-type, serving as a means to universally quantifying it indepen-
dently from the data-type definition. Specifically, when the same operator (e.g.,
BAP_par) is used in two different contexts within the same machine m :
Machine(STATE,EV ENT ), both instances must reference the same sets for
STATE and EVENT , as these are fixed by the machine’s type. However, the
sets for PARAM do not need to be identical, since they are not constrained
by the machine’s type. This allows each occurrence of Param, BAP_par, and
Grd_par to have different types, even when used within the same machine.

THEORY EvtBTheoPar
TYPE PARAMETERS STATE,EV ENT, PARAM
DATATYPES



Machine(STATE,EV ENT )
CONSTRUCTORS

Cons_machine(
Event : P(EV ENT ),
State : P(STATE))

AXIOMATIC DEFINITIONS
OPERATORS

Param <expression> (m : Machine(STATE,EV ENT ), e : EV ENT ) : P(PARAM)
Grd_par <expression>

(m : Machine(STATE,EV ENT ), e : EV ENT ) : P(PARAM × STATE)
BAP_par <expression>

(m : Machine(STATE,EV ENT ), e : EV ENT ) : P((PARAM × STATE) × STATE)
. . .

AXIOMS . . .

Listing 1. Machine Data-type with parameter
Instantiation principle for parameters. The instantiation of the EvtB-

TheoPar theory from Listing 1, which introduces parameters, requires the defi-
nition of a set of axioms that encode an Event-B machine. The approach involves
specifying the different components of the machine through definition axioms–
predicates of the form Op(m, . . .) = Expr.
CONTEXT EvtInstant iat ionSchema
AXIOMS

. . .
AxmParEv.1 :Param(m, ev1) = T ev1

Par . . .
AxmParEv.n :Param(m, evn) = T evn

Par. . .
AxmParGrd.1 :Grd_par(m, ev1) = {par 7→ s | par ∈ T ev1

Par ∧ . . .} . . .
AxmParGrd.n :Grd_par(m, evn) = {par 7→ s | par ∈ T evn

Par ∧ . . .} . . .
AxmParBAP.1 :BAP_par(m, ev1) = {(par 7→ s) 7→ sp | par ∈ T ev1

Par ∧ . . .} . . .
AxmParBAP.n :BAP_par(m, evn) = {(par 7→ s) 7→ sp | par ∈ T evn

Par ∧ . . .} . . .

Listing 2. Event instantiation schema
Machine POs. In addition to the introduction of event parameters and

axiomatic definition, we must also update the defined PO operators. The proof
obligations have been updated (defined axiomatically); the operators defining
the invariant preservation PO are shown in Listing 3. The PO is divided into
two parts: the base case and the induction case with the event. Note that the
base and induction cases take into account type homogeneity in their axiomatic
definitions and associated POs, respectively. The axiomatic definition of the
data-type machine allows for including the parameter PARAM type in the proof
obligation definition for specific events. Other POs operators are also updated
in the same way.
OPERATORS

. . .
Mch_INV_One_Ev_Par_Def predicate (m : Machine(STATE ,EVENT) ,

e : EVENT )
well−definedness e ∈ Progress(m)
direct def init ion

BAP_par(m, e)[(Param(m, e) × Inv(m)) ∩ Grd_par(m, e)] ⊆ Inv(m)
Mch_INV_Init predicate (m : Machine(STATE ,EVENT))

direct def init ion
AP(m) ⊆ Inv(m)

Mch_INV predicate (m : Machine(STATE ,EVENT))
direct def init ion

Mch_INV_Init(m) ∧ (∀e · e ∈ Progress(m) ⇒ Mch_INV_One_Ev_Def (m, e))
. . .

Listing 3. Well defined Data-type operators with parameter (behavioural semantics)



Conclusion. Unlike the original EB4EB framework, which employs con-
structive definitions for all types and operators within the associated Event-B
theory, our approach utilises axiomatic definitions for event parameters. This al-
lows for the instantiation of the theory to define various parameters with differing
sets as their types, providing greater flexibility. Our approach has been applied
to several examples to demonstrate the flexibility, reliability, and scalability of
the extended EB4EB framework in terms of modelling, expressive power, and
simplification of the proof process. More details can be found in [9].
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