

Code Generation Update

Andy Edmunds
University of Southampton

ae2@ecs.soton.ac.uk

Code Generation
with Tasking Event-B

– Tasking Event – B is
● an extension to Event-B.
● flow control language and annotations.

– Tasking Machines (1) map to task implementations.

– Shared Machines map to protected objects,
● provide monitor-style protection.

– Environ Machines (2) map to tasks for simulation.

– Tasking/Environ machines have 'Task Bodies'
● to describe program flow.
● which map to program statements.

– Program flow such as,
● IF event1 ELSE event2 END
● event1 ; event2

– Events 'populate' sequences, branches, loops,
update statements, procedures, procedure calls.

Code Generation
with Tasking Event-B

Since the last RUDW

– Concluded industrial collaboration,
● Improvements to translator.
● Java interface for the Environment.

– Templates and code-injection.

– Event-B to FMI-C translation,
● for use in co-simulation.

– Theory + Java Code for Implementable Sets
and Functions.

Improvements to Translators

● Automatic flattening of invariants, and events.
● Automatic inference of typing annotations and

parameter directions.
● … means fewer steps to generate code from an

appropriately constructed model.

For Java integration with Event-B projects,
● To use Java Nature and Java Builder (JDT).

Some Items on the To-do List

But, we are still short of the goal, in terms of usability,
and features.

– Validation and feedback.

– Translation of nested state-machines.

– Synchronization between events of a state-machine

(Other than the current between-cycles approach).

New: A Java Interface for the Environment

Hardware Interface – most likely manually coded.
Simulation Code – can be auto-generated.

New: Templates and Code Injection

– Short paper in ABZ2014.

– Arose out of Thales' request to think about

customisation for deploying on different targets.

– Boilerplate code with injection points.

– Injected code is generated from an Event-B
model,

● using a 'generator' extension point.

An Example Template

//## <addToHeader>

fmiStatus fmiInitializeSlave(fmiComponent c,

 fmiReal tStart, fmiBoolean StopTimeDefined,

 fmiReal tStop) {

 ModelInstance* comp = (ModelInstance*) c;

 //## <initialisationsList>

 //## <stateMachineProgramCounterIni>

 return fmiOK;

}

Tags are 'processed'.
Other lines are output verbatim.

Template Processing

New: Event-B to C, for Co-simulation

– For Advance EU FP7, uses FMI.

– The objective is to,
● test the generated code in a simulation of its

environment.
● improve performance of simulation.

– Master and Slaves communicate through API.

– Slaves are FMUs.

Event-B to C, for Co-simulation

– The master is cyclic; slaves are initialized,

… then master does simulate-update cycle.

– We can generate an FMU from an Event-B
machine and component diagram.

– We can replace the machine, with the FMU, in the
component diagram, and simulate/test with that.

– We can also import FMUs into other simulators.

FMUs from Machines

Current Status

● Event-B to C code generator – Working.

● FMU packager – Working.

● Examples pass FMU checkers/simulators
● Win32
● Linux64

● Component simulation – not yet working.

● Dymola Simulator import – not yet working.

NEW: Implementable Sets and Functions

– Translate Sets and Functions to code.
● Uses the Theory plug-in.

– Depends on target language API,
● Java HashSet and HashMap.
● Function - domain elements map to keys,
● Range elements map to values.

– Still experimental.

– Used in PRIME project.

Implementable Sets

Translation Rules

Java Set Implementation

Questions:

How to improve plug-in development when much
of it is engineering, not research?

● Academia v Industry: bridging the gap?
● Providing a platform to 'sell' Event-B?

Day-to-day,
● Keeping up with (communicating) changes?
● Compatibility issues?
● ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

