
Contents

1 Atomicity Decomposition Part 1 - Overview and Background 1

1.1 Introduction . 1

1.2 Overview of Atomicity Decomposition Diagram in Event-B 1

1.3 Event-B Refinement and Atomicity Decomposition Diagrams 3

1.4 Examples of Application . 4

1.5 Conclusion . 7

2 Atomicity Decomposition Part 2 - Patterns and Features 9

2.1 Introduction . 9

2.2 Atomicity Decomposition Diagram Patterns 9

2.2.1 Introduction . 9

2.2.2 Sequence Pattern . 10

2.2.3 Loop Pattern . 15

2.2.4 and-constructor Pattern . 18

2.2.5 or-constructor Pattern, Multiple Choice 20

2.2.6 xor-constructor Pattern, Exclusive Choice 23

2.2.7 all-replicator Pattern . 26

2.2.8 some-replicator Pattern . 29

2.2.9 one-replicator Pattern . 31

2.3 Additional Features of the Atomicity Decomposition Approach 34

2.3.1 The Most Abstract Level . 34

2.3.2 Combined Atomicity Decomposition Diagram 34

2.3.3 Several Atomicity Decompositions for a Single Event 35

2.3.4 Strong Sequencing versus Weak Sequencing 35

2.3.5 Loop Resetting Event . 37

2.4 Conclusion . 40

References 43

i

Chapter 1

Atomicity Decomposition Part 1 -

Overview and Background

1.1 Introduction

The atomicity decomposition approach was first introduced by Butler in [1]. In this chap-

ter we present the atomicity decomposition approach from [1], in Section 1.2. A major

contribution of atomicity decomposition approach is structuring refinement in Event-B.

To highlight this contribution, Section 1.3 outlines the role of atomicity decomposition

diagrams in structuring refinement in Event-B. It is followed by two examples of the

atomicity decomposition application from [1], in Section 1.4.

1.2 Overview of Atomicity Decomposition Diagram in Event-

B

Although the refinement approach in Event-B provides a flexible approach to modelling,

it does not have the ability to show the relationship between one abstract event and

the corresponding concrete events. The atomicity decomposition approach is intended

to make the relationships between abstract and concrete events clearer and easier to

manage than simply using the standard Event-B refinement technique. In this approach

course-grained atomicity can be refined to more fine-grained atomicity.

The tree structure notation of the atomicity decomposition approach is first introduced

by Butler in [1]. The diagrammatic notation is based on JSD structure diagrams by

Jackson [2]. In [1] the atomicity decomposition diagram is presented in two examples

containing a parallel execution of an event. Before introducing the parallel notation, we

generate a simple view of the atomicity decomposition diagram in order to explain the

basic features. It is shown in Figure 1.1. The features explained here are from [1].

1

2 Chapter 1 Atomicity Decomposition Part 1 - Overview and Background

Event1

AbstractEvent

Event2 Event3

Root, abstract event, is decomposed into some sub events

The sub events are read from left to right and indicate sequential control

A dashed line:

Event1 refines skip

A solid line:

Event3 refines AbstractEvent

Figure 1.1: Atomicity Decomposition Diagram

The abstract atomic event, AbstractEvent, appears in the root node. The diagram

shows how the root is decomposed into some sub-events in the refinement model. The

number of sub-events can be one or more. In this case we consider three sub-events to

explain the features of the diagram. An important feature of diagram, in common with

JSD structure diagrams, is that the sub-events are read from left to right and indicate

sequential control from left to right. This means that our diagram indicates that the

abstract event is realised in the refinement by firstly executing Event1, then executing

Event2 and then executing Event3.

Sub-events are treated in two ways, one refines abstract event and the others are viewed

as hidden events in the abstract model which refine skip in the refinement model. So

another important feature is types of lines, solid line and dashed line. The sub-events

corresponding to dashed lines, Event1, Event2, are new events which refine skip in the

abstract model. The sub-event with a solid line, Event3, is a refining event which must

be proven to refine the abstract event, AbstractEvent. A new event introduced in the

refinement model which refines skip, can be viewed as a hidden event in the abstract

model. This kind of event is not visible to the environment of a system in the abstract

model, and therefore they are outside the control of the environment [1].

In this case, Event1 should execute before Event2. Also Event2 should execute before

Event3. This is done by some control variables in the refinement model. We will see

more about control variables later in this chapter.

With the aim of making the point more clear, the possible execution traces of the model,

called event trace [1], are presented here.

Chapter 1 Atomicity Decomposition Part 1 - Overview and Background 3

The execution trace of the abstract model contains a single event and is represented as

< AbstractEvent >. The execution trace of the refinement model events, Event1, Event2

and Event3, is < Event1, Event2, Event3 >.

1.3 Event-B Refinement and Atomicity Decomposition Di-

agrams

One of the important motivations of the atomicity decomposition approach is that it

explicitly shows the event ordering and the relationship between an abstract event and

the corresponding concrete events, whereas the Event-B text is not able to explicitly

show these properties. This can be seen by comparing Figure 1.2 and Figure 1.3.

Assume Event E21 should execute before event E22. And event E22 should execute

before event E23. Considering Figure 1.2, the ordering between these events is implicit.

Whereas the atomicity decomposition diagram in Figure 1.3, explicitly shows the event

ordering by a sequence execution of events from left to right.

events

event E21event E21
where

@grd1 VarE21 = FALSE
then

@act1 VarE21 TRUE
end

event E22event E22
where

@grd1 VarE21 = TRUE
@grd2 VarE22 = FALSE

then
@act1 VarE22 TRUE

end

event E23 refines E1
where

@grd1 VarE22 = TRUE
@grd2 VarE23 = FALSE

then
@act1 VarE23 TRUE

endend

end

Figure 1.2: Event-B Model of Atomicity Decomposition Diagram in Figure 1.3

Considering Figure 1.2, the ordering is implicitly specified by some control variables in

the Event-B model. VarE21, VarE22 and VarE23 are boolean control variables which

are initialised to FALSE. First event E21 executes and enables VarE21 variable. Event

E22 is guarded by VarE21 variable, grd1. Therefore event E22 can execute only after

4 Chapter 1 Atomicity Decomposition Part 1 - Overview and Background

event E21 executes. Also event E23 is guarded by VarE22, grd1. So event E23 can

execute only after event E22 executes.

event E1

event E21
where

@grd1 VarE21 = FALSE

event E22
where

@grd1 VarE21 = TRUE
@grd2 VarE22 = FALSE

event E23 refines E1
where

@grd1 VarE22 = TRUE
@grd2 VarE23 = FALSEthen

@act1 VarE21 TRUE
end

@grd2 VarE22 FALSE
then

@act1 VarE22 TRUE
end

@grd2 VarE23 FALSE
then

@act1 VarE23 TRUE
end

Figure 1.3: Atomicity Decomposition Diagram of Event-B Model in Figure 1.2

Moreover the diagram explicitly illustrates our intention that the effect achieved by

event E1 at the abstract model is realized at the refinement model by execution of event

E21 followed by event E22 followed by event E23, Figure 1.3. Whereas in the standard

Event-B model, Figure 1.2, events E21 and E22 are refinements of skip and there is no

explicit connection to abstract event E1. Technically, event E23 is the only event that

refines event E1 but the diagram indicates that we break the atomicity of abstract event

E1 into three sub-events E21, E2 and E23.

1.4 Examples of Application

With the aim of making the application of atomicity decomposition diagrams more clear,

two examples from [1] are presented here.

Assume the abstract machine contains a single event Out, that simply outputs N exactly

for one time. Considering Figure 1.4, there is only one boolean control variable in the

machine, called Out, which initialised to false. Out event can execute only when it has

not executed before, grd1. In execution it disabled itself, act1. The output value is

represented in the parameter v, grd2.

The output is produced in an atomic event in the abstract machine. We wish to refine

the abstract machine by a machine modelling a concurrent accumulation of the output

value before outputting it. The refinement structure is presented in an atomicity de-

composition diagram in Figure 1.5. The diagram shows that we break the atomicity

of abstract Out event, to three sub-events. This means that the abstract Out event

is realised in the refinement by firstly executing the initialisation, then executing the

Increase event in parallel and then executing Out event. The parallel execution here

is illustrated with a circle containing “all” and name of a parameter. We call it all-

replicator, since it replicates the corresponding sub-events with a new parameter, p, and

Chapter 1 Atomicity Decomposition Part 1 - Overview and Background 5

machine M0
variables Out
invariants
@inv1 Out ∈ BOOL

events
event INITIALISATION

then
@act1 Out ≔ FALSE

end

event Out
any v
where

@grd1 Out = FALSE
@grd2 v = N

then
@act1 Out ≔ TRUE

end

End

Figure 1.4: Abstract Model of an Outputting System

Increase event needs to executes for all instances of parameter p before Out event exe-

cution. Figure 1.5 is slightly different to what Butler presented in [1]. Butler illustrates

the parallel execution with a circle containing “par(p)”. Since we have improved the

atomicity decomposition notations, which will be presented in Chapter 2, we found it

more understandable if the diagram presented here is compatible with the improvement

of notations in Chapter 2.

Out

Increase (p)

all(p)

Initialisation Out

Figure 1.5: Atomicity Decomposition Diagram of an Outputting System

The Event-B model of the refinement machine is presented in Figure 1.6. Each parallel

execution of Increase event, increments the variable x exactly once. When all N sub-

events have incremented x, the value of x is output with execution of Out event.

Consider the case where we have two subprocesses, PROC = {p1, p2}, and N = 2. The

event traces of the refinement model are as below:

< Initialisation, Increase(p1), Increase(p2), Out(2) >

< Initialisation, Increase(p2), Increase(p1), Out(2) >

The two possible interleaving of Increase(p1) and Increase(p2), represented by two events

traces, model their concurrent execution.

6 Chapter 1 Atomicity Decomposition Part 1 - Overview and Background

Out

event Increase
any p
where
@grd1 p ∈ PROC
@grd2 p ∉ Increase

then
@act1 Increase ≔ Increase ∪ {p}
@act2 x ≔ x +1

end

all(p)

event INITIALISATION
then
@act1 x ≔ 0
@act2 Increase ≔ ∅

@act3 Out ≔ FALSE
end

event Out refines Out
any v
where
@grd1 Out = FALSE
@grd2 Increase = PROC
@grd3 v = x

then
@act1 Out ≔ TRUE

end

Figure 1.6: Event-B Refinement of an Outputting System

As presented in the first example, Out event needs to execute only for one time. There-

fore we defined the control variable, Out, as a boolean variable, which is disabled in the

body of Out event after the first execution. Whereas sometimes we wish to model a

sequence of events which can execute more than one time for different instances of one

or more parameters. Second example presents this case. Later in Chapter 2, first case

is called Single Instance (SI) and second case is called Multiple Instance (MI). The type

of control variables are different in SI and MI. Considering SI, as seen in first example,

control variables are boolean, whereas in the MI case, control variables are sets. Having

set type enables multiple instances of an event and event interleaving.

As the second example, consider the atomicity decomposition diagram of a file write

system in Figure 1.7. The atomicity of the abstract Write event is break to three sub-

events in the refinement machine, in order to model the writing of individual pages,

PageWrite event. The writing of the entire file is no longer atomic. The writing of a file

is initiated by StartWrite event and ended by EndWrite event. Multiple file writes are

allowed to be taking place simultaneously in an interleaved fashion. This is indicated

by a parameter provided in abstract Write event, f, and inherited with all sub-events.

Also in the refinement model, the pages of an individual file f can be written in parallel

hence an all-replicator over PageWrite event replicates its parameter with p.

Write (f)

PageWrite (f, p)

all(p)

StartWrite (f) EndWrite (f)

Figure 1.7: Atomicity Decomposition Diagram of File Write

The control variables are sets and the invariants to model event sequencing implied in

Figure 1.7 are presented in Figure 1.8. StartWrite is a subset of FILE, because it is

Chapter 1 Atomicity Decomposition Part 1 - Overview and Background 7

bounded by parameter f, (inv1). PageWrite is a subset of FILE × PAGE, because it

is bounded by parameter f and all-replicator parameter p, (inv2). If a page has been

written for a file, then StartWrite will already have executed for the file, (inv3).

invariants
@inv1 StartWrite ⊆ FILE
@inv2 PageWrite ⊆ FILE × PAGE
@inv3 dom(PageWrite) ⊆ StartWrite

Figure 1.8: Invariants of File Write Refinement Model

The Event-B model of StartWrite and PageWrite events are presented in Figure 1.9. The

event sequencing is managed with some guards. PageWrite is guarded with StartWrite,

grd1, which indicates ordering between StartWrite event and each PageWrite event.

event StartWrite
any f
where

@grd1 f ∈ file
@grd2 f ∉ StartWrite

then
@act1 StartWrite ≔ StartWrite ∪ {f}

end

event PageWrite
any f p
where

@grd1 f ∈ StartWrite
@grd2 f ↦ p ∉ PageWrite

then
@act1 PageWrite ≔ PageWrite ∪ { f ↦ p }

end

Figure 1.9: Event-B Model of File Write

The accurate explanation of Event-B model derived from atomicity decomposition dia-

grams are presented in a pattern based style in Chapter 2. In this section, by using some

examples, we tries to make the overall benefits of the atomicity decomposition approach

more clear.

1.5 Conclusion

This chapter introduced the atomicity decomposition diagram notation. We have out-

lined how atomicity decomposition diagrams help to structure refinement in Event-B by

showing the relationships between events of different refinement levels and by providing

an explicit visual view of the ordering between events. Each node presents one event.

The root node contains the name of an abstract event and the child nodes contain the

names of concrete sub-events. A refining relationship between an abstract event and

a concrete event is indicated with a solid line in the diagram between these two event

8 Chapter 1 Atomicity Decomposition Part 1 - Overview and Background

nodes, and a non-refining relationship is indicated with a dashed line. The ordering

between events is indicated with a sequence from left to right in the diagram.

To make the application of atomicity decomposition diagrams more clear and to high-

light the benefits of atomicity decomposition diagrams in structuring refinement, two

examples have been outlined. First example covers the case when a single instance (SI)

of event executions is need, whereas the second one shows the multiple instance (MI)

case.

This chapter presented background material required to understand the atomicity de-

composition patterns in Chapter 2.

Chapter 2

Atomicity Decomposition Part 2 -

Patterns and Features

2.1 Introduction

The features of the atomicity decomposition approach in [1] are introduced in Chapter 1.

Using these features we have developed two case studies. These developments helped

us to improve and expand the atomicity decomposition approach by discovering new

constructors and features. This chapter presents the constructor patterns and features

in Section 2.2 and Section 2.3 respectively. Each pattern outlines the intention and

diagrammatic notation of a decomposing constructor and the way that it is encoded in

the Event-B model.

2.2 Atomicity Decomposition Diagram Patterns

2.2.1 Introduction

This section presents the atomicity decomposition constructors in a pattern-based style.

Each pattern outlines one constructor in one level of refinement.

In the atomicity decomposition approach, we found some common and reusable con-

structors (as solutions) to some common intentions (as problems). These recurring

problem-solution pairings motivated us to use a pattern-based approach to introduce

the atomicity decomposition constructors. Moreover organizing the problems and solu-

tions in a pattern-based approach is easy to read, understand and apply.

In total, eight constructor patterns have been delineated. The constructor patterns are

divided to four distinct groups:

9

10 Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features

• Sequence pattern, Section 2.2.2.

• Loop pattern, Section 2.2.3.

• Logical constructor patterns: and-constructor, Section 2.2.4, or-constructor, Sec-

tion 2.2.5, xor-constructor, Section 2.2.6.

• Replicator patterns: all-replicator, Section 2.2.7, some-replicator, Section 2.2.8,

one-replicator, Section 2.2.9.

The logical constructors, including the and-constructor, the or-constructor and the xor-

constructor, introduce logical relations between two or more sub-events.

Each replicator constructor, including the all-replicator, the some-replicator and the

one-replicator, introduces a new parameter to its related sub-event and replicates the

dimension of the related sub-event.

The sequence pattern and the all-replicator pattern have been introduced in [1]. The

examples of these two constructors from [1] have been presented in Section 1.4. Here we

present them in a way that follows the pattern based style. The other constructs and

corresponding Event-B models are derived from developing our case studies.

2.2.2 Sequence Pattern

Each pattern is presented in a table. The sequence pattern is presented in Table 2.1.

Each pattern table includes the name of the pattern in the first row, followed by a

diagrammatic representation of the atomicity decomposition diagram of the pattern for

single instance execution (SI) on the left and multiple instances execution (MI) on the

right. It is followed by the Event-B model generated from the atomicity decomposition

diagrams. The Event-B model contains the invariants and events separately for the SI

case and the MI case, labeled as “SI/MI Invariants” and “SI/MI Events”. The Event-

B model shown in the table is part of the model which is generated from atomicity

decomposition diagrams, user defined Event-B elements like events can be included

in the Event-B model but not in any atomicity decomposition diagram. The table

interpretation just described, is used for all patterns’ tables.

Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features 11

Name: Sequence

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent

Event1 Event2 Event3

AbstractEvent (p)

Event1 (p) Event2 (p) Event3 (p)

AbstractEvent

Event1 Event2 Event3

AbstractEvent (p)

Event1 (p) Event2 (p) Event3 (p)

Event-B Model

Single Instance(SI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_Event2_seq Event2 = TRUE ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ Event2 = TRUE

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_Event2_seq Event2 ⊆ Event1

@inv_Event3_seq Event2⊆ Event3

@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_Event2_seq Event2 = TRUE ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ Event2 = TRUE

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_Event2_seq Event2 ⊆ Event1

@inv_Event3_seq Event2⊆ Event3

@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events: Multiple Instance(MI) Events:

event Event1

where

@grd Event1 = FALSE

then

@act Event1≔ TRUE

end

event Event2

where

@grd_seq Event1 = TRUE

@grd Event2 = FALSE

then

@act Event2≔ TRUE

end

event Event3 refines AbstractEvent

where

@grd_seq Event2 = TRUE

@grd Event3 = FALSE

then

@act Event3≔ TRUE

end

event Event1

any p where

@grd p ∉ Event1

then

@act Event1≔ Event1 ∪ { p }

end

event Event2

any p where

@grd_seq p ∈ Event1

@grd p ∉ Event2

then

@act Event2≔ Event2 ∪ { p }

end

event Event3 refines AbstractEvent

any p where

@grd_seq p ∈ Event2

@grd p ∉ Event3

then

@act Event3≔ Event3 ∪ { p }

end

Table 2.1: Sequence Pattern

12 Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features

Intention: The atomicity of an abstract event, AbstractEvent, is decomposed to se-

quencing of two or more concrete sub-events. In other words, the behaviour exhibited

by an abstract event is realised by the sequential execution of one or more concrete

events in the refinement level. Since we are able to describe the features of the sequence

pattern by having three sub-events, we minimise the number of sub-events to three,

Event1, Event2 and Event3.

Diagrammatic Representation: The name of the abstract event appears in the root

node, and sub-events’ names appear in leaf nodes in sequence from left to right. A leaf

is a node without any child node.

In decomposing the atomicity of an event, two cases are considered. First when a single

execution of an event is needed. In this case, there is no control parameter for the

event. Moreover control variables are defined with boolean type, since we do not need

to record the execution of events for different instances of the parameter(s). This case is

called Single Instance (SI). The second case is when multiple instances of an event are

needed. It is called Multiple Instances (MI). In this case, there are one or more control

parameters for the events. In the diagrammatic representation, control parameter(s)

name(s) appear in between parentheses after the event name. In the table, p represents

a list of parameters, p1, ..., pn. We use a set type for control variables. Using sets, enables

multiple instances of an event and event interleaving.

Restrictions: One and only one of the leaves in an atomicity decomposition diagram is

connected to the root event with a solid line. Other leaves have to connect with dashed

lines. This restriction is referred to as the “single solid line” rule in the rest of patterns.

This restriction can raise two questions:

• First, where is the leaf placed with solid line in the sequence of sub-events in the

atomicity decomposition of an abstract event?

• Second, why only one leaf with the solid line can be placed in the atomicity de-

composition of an abstract event?

The first question is answered in the next two paragraphs. The short answer for the

second question is that this restriction is a result of restrictions in the Event-B model.

Since there can be only one occurrence of the abstract event in the refinement level,

there is only one refining event (leaf with the solid line). The second question is clarified

at the end of this section using examples of event traces.

In the Event-B model, the EQL (Equality of preserved variable) proof obligation,

(evt/v/EQL), ensures that an abstract variable v is preserved in the concrete event

evt. It means that the EQL proof obligation does not allow an abstract variable to be

changed in a new event which refines skip. The abstract variable v can be modified

Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features 13

only by a concrete event that refines the abstract event which modifies variable v. Also

the SIM (Simulation) proof obligations ensure that each action in a concrete event

simulates the corresponding abstract action. It means when a concrete event executes,

the corresponding abstract event is not contradicted.

The leaf corresponding to the solid line is encoded to an event which refines the abstract

event, appearing as the root node. Considering the limitation which EQL and SIM

proof obligations make in the Event-B model, the refining event is the event which

simulates the main behaviour of the abstract event by modifying the corresponding

abstract variable(s). In our patterns we consider it as the last event, Event3.

Event-B Model:

Semantics are given to an atomicity decomposition diagram by generating an Event-B

model from it. We now explain how an atomicity decomposition diagram of the sequence

pattern is encoded as an Event-B model. The encoded Event-B model for the sequence

pattern is presented in Table 2.1.

The middle sub-event in the sequence pattern is replaced by a constructor in the rest of

patterns, which are described later. Each constructor can be placed as the first or the

last sub-event of the diagram too; the reason that we consider it as the middle sub-event

is to show the effect of the previous sub-event (the first sub-event) on the constructor,

and the effect of the constructor on the next sub-event (the last sub-event). The sequence

pattern is considered as a basic pattern for the rest of atomicity decomposition patterns.

Therefore most of the translation rules from the diagram to the Event-B model which

are explained in this pattern, are true for the rest of patterns.

For each leaf, a node without any child node, one control variable and one event are

generated. The generated event name and variable name are same as the leaf name.

All generated new events are labeled as ordinary events. Ordering between leaves is

achieved by generating some actions and guards in generated events. The generated

event corresponding to the leaf with the solid line refines the abstract event. The leaf

with the solid line can have the same name as the abstract event, since it refines the

abstract event. In the diagrams of Table 2.1 the rightmost event can have the same

name as the abstract event.

Considering the SI case, the boolean control variable’s value in the related event, is

assigned to TRUE. This assignment enables the next event’s guard in sequence. For

example, in event Event1, variable Event1 is assigned to TRUE, indicating that event

Event1 executes. This assignment enables guard (Event1 = TRUE) in event Event2.

We do not need the sequencing guard in the first event, as there is no event before

it in sequence. Another guard is generated for each generated event too. This guard

indicates that the current event has not executed before, i.e., (Event1 = FALSE) in

event Event1.

14 Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features

In the MI case, each event corresponding to a leaf gives rise to a set control variable

whose type is based on the type of the parameter(s) of the leaf. In the table, p represents

a list of parameters, p1, ..., pn, of type TY PE(p1) × ... × TY PE(pn). When an event

executes for a specific value of the instance parameter(s), the value is added to the

set control variable in the action of that event. This enables the next event’s guard

in sequence. For example, in event Event1, the parameter value is added to the set

variable Event1. This action enables the next event’s guard, (p ∈ Event1) in event

Event2. Another guard in each event checks that the event has not executed before,

i.e., (p /∈ Event1) in event Event1.

For each leaf an invariant is generated. The invariants states the sequencing conditions.

For example in the SI case, (Event2 = TRUE ⇒ Event1 = TRUE) is a condition to

show that Event1 should executes before Event2. In the MI case, the subset invariant

(Event2 ⊆ Event1) shows that for instances of variable Event2, event Event1 has

executed before. For the first leaf, we do not need a sequencing invariant. Instead a

typing invariant is generated.

A gluing invariant is generated for a leaf with solid line. Leaf Event3 connects to the root

node with solid line, so the gluing invariant (Event3 = AbstractEvent) is generated.

To make the use of gluing invariant clear, consider a case when machine M2 refines

machine M1. Atomicity decomposition diagrams help illustrate the relation between

abstract events of M1 and concrete events of M2. Each event E of M2 corresponding

to a leaf with solid line in diagrams, either refines an abstract event A of M1, or it is a

new event corresponding to a leaf with dashed line refining skip. The proof obligations

defined for Event-B refinement are based on the following proof rule that makes use of

a gluing invariant Inv Gluing.

• Each M2.E refines M1.A under Inv Gluing, if A is defined.

• Each M2.E refines skip under Inv Gluing, if E is a new event.

Therefore in order to discharge the refinement proof obligations, some gluing invari-

ants, which define the relationship between abstract variable and concrete variables, are

needed.

Event Execution Trace Examples:

Considering the SI case in the sequence pattern, the single event trace of the refinement

model is as follow:

< Event1, Event2, Event3 >

Each event trace represents a record of a possible execution trace of the model. It is

instructive to relate the event trace of the refinement model with the event trace of the

abstract model. The single event trace of the abstract model is

Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features 15

< AbstractEvent >

If we remove Event1 and Event2 from the trace of the refinement model, we get the

trace of the abstract model (considering Event3 refines AbstractEvent):

< Event1, Event2, Event3 > \ {Event1, Event2} = < Event3 > = < AbstractEvent >

Removing events from a trace is the standard way of giving a semantic to hidden

events [1, 3] and is used, for example, in CSP. By treating Event1 and Event2 as hidden

events, traces of the refinement model looks like traces of the abstract model. This

illustrates a semantics of refinement of Event-B models. Machine M1 is a refinement of

machine M0 since any trace of M1 in which the new events are hidden is also a trace

of M0. In this point the answer for the second question raised in the Restriction part

can be made clear. If more than one leaf refines the abstract event in the atomicity

decomposition of the abstract event, the refinement semantics in Event-B is violated.

Because removing hidden events from the refinement trace does not result in the same

abstract trace.

As mentioned in the explanation of the Event-B model, using the set type for control

variables, enables multiple instances of an event in an event trace. To make this point

clear, we provide some examples of event traces for the MI case here. Considering the

MI case in the sequence pattern, assume the case where we have two instances of the

parameter, (p1 and p2), two examples of possible event traces are as follows :

< Event1(p1), Event2(p1), Event3(p1), Event1(p2), Event2(p2), Event3(p2) >

< Event1(p1), Event1(p2), Event2(p1), Event2(p2), Event3(p1), Event3(p2) >

To clarify the sequencing conditions modelled with subset invariants in the MI case, we

explain the sequencing invariant, (Event2 ⊆ Event1). This invariant holds in the above

two event traces. For example in the second trace, after execution of Event2(p1), set

variable Event2 = {p1} is a subset of set variable Event1 = {p1, p2}.

2.2.3 Loop Pattern

The loop pattern is presented in Table 2.2. The table interpretation is the same as what

described in term of the sequence pattern table interpretation in Section 2.2.2.

Intention: In the sequence of sub-events, zero or more execution of an event is needed.

16 Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features

Name: Loop

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent

LoopEvent

*

AbstractEvent (p)

LoopEvent (p)

*

Event1 Event3

Event1 (p) Event3 (p)

AbstractEvent

LoopEvent

*

AbstractEvent (p)

LoopEvent (p)

*

Event1 Event3

Event1 (p) Event3 (p)

Event-B Model

Single Instance(SI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_Event3_seq Event3 = TRUE ⇒ Event1 = TRUE

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_Event3_seq Event3⊆ Event1

@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_Event3_seq Event3 = TRUE ⇒ Event1 = TRUE

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_Event3_seq Event3⊆ Event1

@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events: Multiple Instance(MI) Events:

event Event1

where

@grd Event1 = FALSE

then

@act Event1≔ TRUE

end

event LoopEvent

where

@grd_seq Event1 = TRUE

@grd_loop Event3 = FALSE

end

event Event3 refines AbstractEvent

where

@grd_seq Event1 = TRUE

@grd Event3 = FALSE

then

@act Event3≔ TRUE

end

event Event1

any p where

@grd p ∉ Event1

then

@act Event1≔ Event1 ∪ { p }

end

event LoopEvent

any p

where

@grd_seq p ∈ Event1

@grd_loop p ∉ Event3

end

event Event3 refines AbstractEvent

any p

where

@grd_seq p ∈ Event1

@grd p ∉ Event3

then

@act Event3≔ Event3 ∪ { p }

end

Table 2.2: Loop Pattern

Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features 17

Diagrammatic Representation: The loop constructor appears as a circle containing

a star. The node connected to the loop, LoopEvent, can execute zero or more time

after execution of previous sub-event, Event1, and before execution of next sub-event,

Event3, in sequence.

Restrictions: The loop constructor is always connected to the root node with a dashed

line. Since the loop event can execute for more than one time, a loop with a solid line

does not follow the single solid line rule, which has been explained in the Sequence

Pattern (Section 2.2.2). This is clarified at the end of this section using examples of

event trace.

Event-B Model:

The encoded Event-B model for the loop pattern is presented in Table 2.2. No control

variable is generated for a loop leaf, since we do not need to record the loop event

execution. Therefore there is no action for the loop event, LoopEvent here.

A guard is generated in the loop event to check that next event has not executed before,

i.e., guard (Event3 = FALSE) in the SI case and guard (p /∈ Event3) in the MI case.

The event after the loop event, is guarded by the execution condition of the event before

the loop event. Considering the SI case, guard (Event1 = TRUE) and considering the

MI case guard (p ∈ Event1) in event Event3, both check the execution of the event

before the loop, Event1. This guard allows zero executions of the loop event. Right

after execution of event before the loop, with zero execution of the loop event, the event

after the loop can execute. That is why we do not need a variable and an action to

record the loop execution.

An invariant is generated to show the sequencing between the event before the loop,

Event1, and the event after the loop, Event3. The way that sequencing invariant is

described is same as what described in the sequence pattern in Section 2.2.2.

Event Execution Trace Examples:

Considering the SI case diagram in Table 2.2, the event trace of the model in case of

zero execution of the loop is:

< Event1, Event3 >

And the event trace of the model in case of two executions of the loop is:

< Event1, LoopEvent, LoopEvent, Event3 >

As mentioned in the restriction, a loop with a solid line is not allowed due to the Event-B

restrictions. Assume the loop in the SI case diagram in Table 2.2 is connected to the

abstract event with a solid line, and the other two sub-events are connected with dashed

18 Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features

lines. If we remove the hidden sub-events (sub-events with dashed line) from the above

event trace, the result is as follow:

< LoopEvent, LoopEvent >

Considering what has been explained in the Sequence Pattern in Section 2.2.2 about

removing events from a trace, the just mentioned trace is supposed to be same as the

abstract event trace, < AbstractEvent >, but it is not. Therefore the loop constructor

in an atomicity decomposition diagram is always connected to the abstract event with

a dashed line.

2.2.4 and-constructor Pattern

The and-constructor pattern is presented in Table 2.3. The table interpretation is same

as what was described in terms of the sequence pattern table interpretation in Sec-

tion 2.2.2.

Intention: The intention is to execute all two or more available sub-events in any order,

in the right place in the sequence of other sub-events.

Diagrammatic Representation: The intention stated above is presented in atomicity

decomposition diagram with the and-constructor, a circle containing and. All nodes

connected to the and-constructor execute in any order in the sequence of other sub-

events. For simplicity, in this pattern we consider two leaves for the and-constructor.

Restrictions: There are at least two nodes connected to the and-constructor. Following

single solid line rule, the and-constructor is always connected to the root node with

a dashed line, and all of the corresponding and-constructor events, AndEvent1 and

AndEvent2 here, inherit dashed line from the and-constructor.

Event-B Model:

The encoded Event-B model for the and-constructor pattern is presented in Table 2.3.

Each and-constructor event can execute only after execution of previous event, Event1.

This is ensured with a guard, explained in the sequence pattern. The next event after the

and-constructor can execute only after execution of all and-constructor events. Therefore

a guard is generated in the event after the and-constructor, to ensures that all of the

and-constructor events execute before. This guard is a logical conjunction between

corresponding control variables generated for the and-constructor leaves. Considering

the SI case, guard (AndEvent1 = TRUE ∧ AndEvent2 = TRUE), and in the MI case

guard (p ∈ AndEvent1 ∩AndEvent2), are generated.

Comparing to sequence pattern invariants, the sequencing invariants for the event after

the and-constructor is slightly changed in order to show the logical conjunction between

control variables of the and-constructor events.

Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features 19

Name: and-constructor

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent

AndEvent1

and

AndEvent2

AbstractEvent (p)

AndEvent1 (p)

and

AndEvent2 (p)

Event1 Event3

Event1 (p) Event3 (p)

AbstractEvent

AndEvent1

and

AndEvent2

AbstractEvent (p)

AndEvent1 (p)

and

AndEvent2 (p)

Event1 Event3

Event1 (p) Event3 (p)

Event-B Model

Single Instance(SI) Invariants:

Invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_AndEvent1_seq AndEvent1 = TRUE ⇒ Event1 = TRUE

@inv_AndEvent2_seq AndEvent2 = TRUE ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ (AndEvent1 = TRUE ∧ AndEvent2 = TRUE)

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_AndEvent1_seq AndEvent1⊆ Event1

@inv_AndEvent2_seq AndEvent2⊆ Event1

@inv_Event3_seq Event3⊆ AndEvent1 ∩ AndEvent2

@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

Invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_AndEvent1_seq AndEvent1 = TRUE ⇒ Event1 = TRUE

@inv_AndEvent2_seq AndEvent2 = TRUE ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ (AndEvent1 = TRUE ∧ AndEvent2 = TRUE)

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_AndEvent1_seq AndEvent1⊆ Event1

@inv_AndEvent2_seq AndEvent2⊆ Event1

@inv_Event3_seq Event3⊆ AndEvent1 ∩ AndEvent2

@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events:

event Event1

where

@grd Event1 = FALSE

then

@act Event1≔ TRUE

end

event AndEvent1

where

@grd_seq Event1 = TRUE

@grd AndEvent1 = FALSE

then

@act AndEvent1≔ TRUE

end

event AndEvent2

where

@grd_seq Event1 = TRUE

@grd AndEvent2 = FALSE

then

@act AndEvent2≔ TRUE

end

event Event3 refines AbstractEvent

where

@grd_seq AndEvent1 = TRUE ∧ AndEvent2 = TRUE

@grd Event3 = FALSE

then

@act Event3≔ TRUE

end

20 Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features

Multiple Instance(MI) Events:

event Event1

any p where

@grd p ∉ Event1

then

@act Event1≔ Event1 ∪ { p }

end

event AndEvent1

any p

where

@grd_seq p ∈ Event1

@grd p ∉ AndEvent1

then

@act AndEvent1≔ AndEvent1 ∪ { p }

end

event AndEvent2

any p

where

@grd_seq p ∈ Event1

@grd p ∉ AndEvent2

then

@act AndEvent2≔ AndEvent2 ∪ { p }

end

event Event3 refines AbstractEvent

any p

where

@grd_seq p ∈ (AndEvent1 ∩ AndEvent2)

@grd p ∉ Event3

then

@act Event3≔ Event3 ∪ { p }

end

Table 2.3: and-constructor Pattern

Event Execution Trace Examples:

Considering the SI case diagram in Table 2.3, the event traces of the model are as follows:

< Event1, AndEvent1, AndEvent2, Event3 >

< Event1, AndEvent2, AndEvent1, Event3 >

2.2.5 or-constructor Pattern, Multiple Choice

The or-constructor pattern is presented in Table 2.4. The table interpretation is the same

as what was described in term of sequence pattern table interpretation in Section 2.2.2.

Intention: The intention is to execute one or more sub-events from two or more avail-

able sub-events, in any order, in the right place in the sequence of other sub-events.

Diagrammatic Representation: The intention stated above is presented in atomic-

ity decomposition diagram with the or-constructor, a circle containing or. One or more

nodes connected to the or-constructor execute in any order in the sequence of other

sub-events. For simplicity, in this pattern we consider two leaves for the or-constructor.

Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features 21

Name: or-constructor

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent

OrEvent1

or

OrEvent2

AbstractEvent (p)

OrEvent1 (p)

or

OrEvent2 (p)

Event1 Event3

Event1 (p) Event3 (p)

AbstractEvent

OrEvent1

or

OrEvent2

AbstractEvent (p)

OrEvent1 (p)

or

OrEvent2 (p)

Event1 Event3

Event1 (p) Event3 (p)

Event-B Model

Single Instance(SI) Invariants:

Invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_OrEvent1_seq OrEvent1 = TRUE ⇒ Event1 = TRUE

@inv_OrEvent2_seq OrEvent2 = TRUE ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ (OrEvent1 = TRUE ∨ OrEvent2 = TRUE)

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_OrEvent1_seq OrEvent1⊆ Event1

@inv_OrEvent2_seq OrEvent2⊆ Event1

@inv_Event3_seq Event3⊆ OrEvent1 ∪ OrEvent2

@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

Invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_OrEvent1_seq OrEvent1 = TRUE ⇒ Event1 = TRUE

@inv_OrEvent2_seq OrEvent2 = TRUE ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ (OrEvent1 = TRUE ∨ OrEvent2 = TRUE)

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_OrEvent1_seq OrEvent1⊆ Event1

@inv_OrEvent2_seq OrEvent2⊆ Event1

@inv_Event3_seq Event3⊆ OrEvent1 ∪ OrEvent2

@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events:

event Event1

where

@grd Event1 = FALSE

then

@act Event1≔ TRUE

end

event OrEvent1

where

@grd_seq Event1 = TRUE

@grd OrEvent1 = FALSE

then

@act OrEvent1≔ TRUE

end

event OrEvent2

where

@grd_seq Event1 = TRUE

@grd OrEvent2 = FALSE

then

@act OrEvent2≔ TRUE

end

event Event3 refines AbstractEvent

where

@grd_seq OrEvent1 = TRUE ∨ OrEvent2 = TRUE

@grd Event3 = FALSE

then

@act Event3≔ TRUE

end

22 Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features

Multiple Instance(MI) Events:

event Event1

any p where

@grd p ∉ Event1

then

@act Event1≔ Event1 ∪ { p }

end

event OrEvent1

any p

where

@grd_seq p ∈ Event1

@grd p ∉ OrEvent1

then

@act OrEvent1≔ OrEvent1 ∪ { p }

end

event OrEvent2

any p

where

@grd_seq p ∈ Event1

@grd p ∉ OrEvent2

then

@act OrEvent2≔ OrEvent2 ∪ { p }

end

event Event3 refines AbstractEvent

any p

where

@grd_seq p ∈ (OrEvent1 ∪ OrEvent2)

@grd_ p ∉ Event3

then

@act Event3≔ Event3 ∪ { p }

end

Table 2.4: or-constructor Pattern

Restrictions: There are at least two nodes connected to the or-constructor. Following

single solid line rule, the or-constructor is always connected to the root node with dashed

line, and all of the corresponding or-constructor events, OrEvent1 and OrEvent2 here,

inherit dashed line from the or-constructor.

Event-B Model:

The encoded Event-B model for the or-constructor pattern is presented in Table 2.4.

Each or-constructor event can execute only after execution of previous event, Event1.

This is ensured with a guard, explained in sequence pattern. Next event after the

or-constructor in sequence can execute only after execution of at least one of the or-

constructor events. Therefore a guard is generated in the event after the or-constructor,

to ensures that at least one of the or-constructor events executes before. This guard is a

disjunction between the corresponding control variables generated for the or-constructor

events. Considering the SI case, guard (OrEvent1 = TRUE ∨ OrEvent2 = TRUE),

and in the MI case guard (p ∈ OrEvent1 ∪OrEvent2), are generated.

Comparing to sequence pattern invariants, the sequencing invariants for the event after

the or-constructor is changed in order to show the disjunction between control variables

of the or-constructor events.

Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features 23

Event Execution Trace Examples:

Considering the SI case diagram in Table 2.4, the event traces of the model are as follows:

< Event1, OrEvent1, Event3 >

< Event1, OrEvent2, Event3 >

< Event1, OrEvent1, OrEvent2, Event3 >

< Event1, OrEvent2, OrEvent1, Event3 >

2.2.6 xor-constructor Pattern, Exclusive Choice

The xor-constructor pattern is presented in Table 2.5. The table interpretation is the

same as what was described in term of sequence pattern table interpretation in Sec-

tion 2.2.2.

Intention: The intention is to execute exactly one event from two or more available

sub-events, in the right place in the sequence of other sub-events.

Diagrammatic Representation: The intention stated above is presented in the atom-

icity decomposition diagram with the xor-constructor, a circle containing xor. Exactly

one of the nodes connected to the xor-constructor executes in the sequence of other

sub-events. The xor-constructor can connect to the root node either with solid line or

dashed line. Since only one of the xor-constructor events execute in this pattern, so

having solid line for the xor-constructor follows the single solid line rule. It is clarified

in examples of event trace at the end of this section. For simplicity, in this pattern we

consider two leaves for the xor-constructor.

Restrictions: There are at least two nodes connected to the xor-constructor.

Event-B Model:

The encoded Event-B model for the xor-constructor pattern is presented in Table 2.5.

The Event-B model is almost like the or-constructor pattern. In each xor-constructor

event, a guard is needed to ensure that other xor-constructor events have not executed.

For example, in the SI case, guard XorEvent2 = FALSE is generated in XorEvent1,

and considering the MI case, guard p /∈ XorEvent2 is generated in XorEvent1 .

Also an extra invariant is provided to show that at any time only one of the xor-

constructor events has executed or none of them has executed. In the SI case, invariant

partition({XorEvent1, XorEvent2} ∩ {TRUE},
{XorEvent1} ∩ {TRUE}, {XorEvent2} ∩ {TRUE})

shows that at any time only one the control boolean variables’value can be TRUE. And

in the MI case invariant

24 Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features

partition((XorEvent1 ∪XorEvent2), XorEvent1, XorEvent2)

shows that the set control variables are disjoints. The partition operator in event-B is

defined as follows:

partition(E0, E1, ..., En) ≡ (E0 = E1 ∪ ... ∪ En) ∧ (i 6= j ⇒ Ei ∩ Ej = ∅)

If the xor-constructor is provided with a solid line, the each xor-constructor sub-event

refines the abstract event. Also a gluing invariant is needed. The just stated invariants

in the SI case and the MI case respectively are changed to:

partition({AbstractEvent} ∩ {TRUE},
{XorEvent1} ∩ {TRUE}, {XorEvent2} ∩ {TRUE})

partition(AbstractEvent,XorEvent1, XorEvent2)

These gluing invariant not only describe the exclusive choice property, but also they

describe the relation between abstract variable and the xor-constructor control variables.

Considering partition definition, the gluing invariants in the SI case and the MI case

respectively describe:

{AbstractEvent}∩{TRUE} = ({XorEvent1}∩{TRUE})∪({XorEvent2}∩{TRUE})

AbstractEvent = XorEvent1 ∪XorEvent2

Event Execution Trace Examples:

Considering the SI case diagram in Table 2.5, the event traces of the model are as follows:

< Event1, XorEvent1, Event3 >

< Event1, XorEvent2, Event3 >

As mentioned above, the xor-constructor can be connected to the root node with a solid

line. Assume the xor-constructor in the SI case diagram in Table 2.2 is connected to the

abstract event with a solid line, and the other two sub-events are connected with dashed

lines. If we remove the hidden sub-events (sub-events with dashed line) from the above

event traces, the results are as follows:

< XorEvent1 >

< XorEvent2 >

Considering what has been explained in the Sequence Pattern in Section 2.2.2 about

removing events from a trace, the just mentioned traces are same as the abstract event

trace, < AbstractEvent >, since both xor-constructor events refine the AbstractEvent.

Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features 25

Name: xor-constructor

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent

XorEvent1

xor

XorEvent2

AbstractEvent (p)

XorEvent1 (p)

xor

XorEvent2 (p)

Event1 Event3

Event1 (p) Event3 (p)

AbstractEvent

XorEvent1

xor

XorEvent2

AbstractEvent (p)

XorEvent1 (p)

xor

XorEvent2 (p)

Event1 Event3

Event1 (p) Event3 (p)

Event-B Model

Single Instance(SI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_XorEvent1_seq XorEvent1 = TRUE ⇒ Event1 = TRUE

@inv_XorEvent2_seq XorEvent2 = TRUE ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ (XorEvent1 = TRUE ∨ XorEvent2 = TRUE)

@inv_xor partition({XorEvent1, XorEvent2} ∩ {TRUE} ,

{XorEvent1} ∩ {TRUE}, {XorEvent2} ∩ {TRUE})

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_XorEvent1_seq XorEvent1⊆ Event1

@inv_XorEvent2_seq XorEvent2⊆ Event1

@inv_Event3_seq Event3⊆ XorEvent1 ∪ XorEvent2

@inv_xor partition((XorEvent1 ∪ XorEvent2), XorEvent1, XorEvent2)

@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_XorEvent1_seq XorEvent1 = TRUE ⇒ Event1 = TRUE

@inv_XorEvent2_seq XorEvent2 = TRUE ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ (XorEvent1 = TRUE ∨ XorEvent2 = TRUE)

@inv_xor partition({XorEvent1, XorEvent2} ∩ {TRUE} ,

{XorEvent1} ∩ {TRUE}, {XorEvent2} ∩ {TRUE})

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_XorEvent1_seq XorEvent1⊆ Event1

@inv_XorEvent2_seq XorEvent2⊆ Event1

@inv_Event3_seq Event3⊆ XorEvent1 ∪ XorEvent2

@inv_xor partition((XorEvent1 ∪ XorEvent2), XorEvent1, XorEvent2)

@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events:

event Event1

where

@grd Event1 = FALSE

then

@act Event1≔ TRUE

end

event XorEvent1

where

@grd_seq Event1 = TRUE

@grd XorEvent1 = FALSE

@grd_xor XorEvent2 = FALSE

then

@act XorEvent1 ≔ TRUE

end

event XorEvent2

where

@grd_seq Event1 = TRUE

@grd XorEvent2 = FALSE

@grd_xor XorEvent1 = FALSE

then

@act XorEvent2 ≔ TRUE

end

event Event3 refines AbstractEvent

where

@grd_seq XorEvent1 = TRUE ∨ XorEvent2 = TRUE

@grd Event3 = FALSE

then

@act Event3≔ TRUE

end

26 Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features

Multiple Instance(MI) Events:

event Event1

any p where

@grd p ∉ Event1

then

@act Event1≔ Event1 ∪ { p }

end

event XorEvent1

any p

where

@grd_seq p ∈ Event1

@grd p ∉ XorEvent1

@grd_xor p ∉ XorEvent2

then

@act XorEvent1≔ XorEvent1 ∪ { p }

end

event XorEvent2

any p

where

@grd_seq p ∈ Event1

@grd p ∉ XorEvent2

@grd_xor p ∉ XorEvent1

then

@act XorEvent2 ≔ XorEvent2 ∪ { p }

end

event Event3 refines AbstractEvent

any p

where

@grd_seq p ∈ (XorEvent1 ∪ XorEvent2)

@grd p ∉ Event3

then

@act Event3≔ Event3 ∪ { p }

end

Table 2.5: xor-constructor Pattern

2.2.7 all-replicator Pattern

The all-replicator pattern is presented in Table 2.6. The table interpretation is the same

as what was described in term of sequence pattern table interpretation in Section 2.2.2.

Intention: The intention is to execute a sub-event for all instances of a new parameter,

in the right place in the sequence of other sub-events. The all-replicator is a generalisa-

tion of the and-constructor.

Diagrammatic Representation: The all-replicator is presented with a circle contain-

ing all flowed by name of a new parameter.

Restrictions: Based on the single solid line rule, the all-replicator is always connected

to the root event with dashed line, since the all-replicator event can execute for more

than one time depending on the number of new introduced all parameter instances.

Event-B Model:

The encoded Event-B model for the all-replicator pattern is presented in Table 2.6. The

all-replicator parameter, p2, is added to the sub-event connected to the all-replicator,

AllEvent, as a new dimension.

Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features 27

The type of generated control variable for the all-replicator event has got one more

dimension compared with other sub-events. Because the all-replicator introduces a new

parameter. An invariant is generated to define the type of the all-replicator control

variable. For instances considering the SI case, variable AllEvent is a subset of type of

new parameter p2, TY PE(p2), whereas other control variables are boolean variables. In

the MI case AllEvent’s variable is defined as a cartesian product of the root parameter’s

type TY PE(p1) and the all-replicator parameter’s type, TY PE(p2).

The event after the all-replicator event in sequence, Event3, can execute only after

execution of the all-replicator event, AllEvent, for all instances of the new parameter, p2.

A guard is generated in next event, Event3, to ensure this property. Guard (AllEvent =

TY PE(p2)) in event Event3 in the SI case, ensures that event AllEvent has executed

for all instances of p2 before. Also considering the MI case, guard (AllEvent[{p1}] =

TY PE(p2)) plays same role. Relational image r[S] in Event-B is defined as below:

r[S] = {y| ∃x.x ∈ S ∧ x 7→ y ∈ r}

Considering relational image definition, guard (AllEvent[{p1}] = TY PE(p2)) ensures

that for p1, AllEvent has executed for all instances of p2 from set TY PE(p2).

An invariant is generated to model the all-replicator condition: (p1 ∈ Event3 ⇒
AllEvent[{p1}] = TY PE(p2)) in MI case and (Event3 = TRUE ⇒ AllEvent =

TY PE(p2) in the SI case.

Event Execution Trace Examples:

Considering the SI case diagram in Table 2.6, assume p2 ∈ {a, b}, the the event traces

of the model are as follows:

< Event1, AllEvent(a), AllEvent(b), Event3 >

< Event1, AllEvent(b), AllEvent(a), Event3 >

Number of executions of AllEvent is always equal to cardinality of the all-replicator pa-

rameter’s type set. In this example AllEvent executes for two times, since card({a, b}) =

2.

28 Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features

Name: all-replicator

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent

AllEvent (p2)

AbstractEvent (p1)

AllEvent (p1, p2)

all(p2)

all(p2)

Event1 Event3

Event1 (p) Event3 (p)

AbstractEvent

AllEvent (p2)

AbstractEvent (p1)

AllEvent (p1, p2)

all(p2)

all(p2)

Event1 Event3

Event1 (p1) Event3 (p1)

Event-B Model

Single Instance(SI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_AllEvent_type AllEvent⊆ TYPE(p2)

@inv_AllEvent_seq AllEvent ≠ ∅ ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ AllEvent = TYPE(p2)

@inv_Event3_gluing Event3 = AbstractEvent

Invariants

@inv_Event1_type Event1⊆ TYPE(p1)

@inv_AllEvent_type AllEvent⊆ TYPE(p1) × TYPE(p2)

@inv_AllEvent_seq dom(AllEvent) ⊆ Event1

@inv_Event3_seq p1 ∈ Event3⇒ AllEvent [{ p1 }] = TYPE(p2)

@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_AllEvent_type AllEvent⊆ TYPE(p2)

@inv_AllEvent_seq AllEvent ≠ ∅ ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ AllEvent = TYPE(p2)

@inv_Event3_gluing Event3 = AbstractEvent

Invariants

@inv_Event1_type Event1⊆ TYPE(p1)

@inv_AllEvent_type AllEvent⊆ TYPE(p1) × TYPE(p2)

@inv_AllEvent_seq dom(AllEvent) ⊆ Event1

@inv_Event3_seq p1 ∈ Event3⇒ AllEvent [{ p1 }] = TYPE(p2)

@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events: Multiple Instance(MI) Events:

event Event1

where

@grd Event1 = FALSE

then

@act Event1≔ TRUE

end

event AllEvent

any p2

where

@grd_seq Event1 = TRUE

@grd p2 ∉ AllEvent

then

@act AllEvent≔ AllEvent ∪ { p2 }

end

event Event3 refines AbstractEvent

where

@grd_seq AllEvent = TYPE(p2)

@grd Event3 = FALSE

then

@act Event3≔ TRUE

end

event Event1

any p where

@grd p ∉ Event1

then

@act Event1≔ Event1 ∪ { p }

end

event AllEvent

any p1 p2

where

@grd_seq p1 ∈ Event1

@grd p1 ↦ p2 ∉ AllEvent

then

@act AllEvent≔ AllEvent ∪ { p1 ↦ p2 }

end

event Event3 refines AbstractEvent

any p1

where

@grd_seq AllEvent [{ p1 }] = TYPE(p2)

@grd p1 ∉ Event3

then

@act Event3≔ Event3 ∪ { p1 }

end

Table 2.6: all-replicator Pattern

Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features 29

2.2.8 some-replicator Pattern

The some-replicator pattern is presented in Table 2.7. The table interpretation is the

same as what was described in term of sequence pattern table interpretation in Sec-

tion 2.2.2.

Intention: The intention is to execute a sub-event for one or more instances of a new

parameter, in the right place in the sequence of other sub-events. The some-replicator

is a generalisation of the or-constructor.

Diagrammatic Representation: The some-replicator is presented with a circle con-

taining some followed by name of a new parameter.

Restrictions: Based on the single solid line rule, the some-replicator is always con-

nected to the root event with dashed line, since the some-replicator event can execute

for more than one time.

Event-B Model:

The encoded Event-B model for the some-replicator pattern is presented in Table 2.7.

The some-replicator parameter, p2, is added to the sub-event connected to the some-

replicator, SomeEvent, as a new dimension.

The type of generated control variable for the some-replicator event is defined with an

invariant as described in the all-replicator pattern.

The event after the some-replicator event in the sequence, Event3, can execute only after

execution of the some-replicator event, SomeEvent, at least for one of the instances of

the new parameter, p2. The sequencing guard (SomeEvent 6= ∅) in event Event3 in

the SI case, ensures that event SomeEvent has executed for one or more instances of

p2 before. Also considering the MI case, guard (p1 ∈ dom(SomeEvent)) ensures that

card(SomeEvent[{p1}]) ≥ 1. It means for p1, event Event3 executes for at least one

instance of p2.

The sequencing invariant generated for Event3, (Event3 ⊆ dom(SomeEvent)), also

shows one or more execution of SomeEvent before execution of Event3.

30 Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features

Name: some-replicator

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent

SomeEvent (p2)

AbstractEvent (p1)

SomeEvent (p1, p2)

some(p2)

some(p2)

Event1 Event3

Event1 (p1) Event3 (p1)

AbstractEvent

SomeEvent (p2)

AbstractEvent (p1)

SomeEvent (p1, p2)

some(p2)

some(p2)

Event1 Event3

Event1 (p1) Event3 (p1)

Event-B Model

Single Instance(SI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_SomeEvent_type SomeEvent⊆ TYPE(p2)

@inv_SomeEvent_seq SomeEvent ≠ ∅ ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ SomeEvent ≠ ∅

@inv_Event3_gluing Event3 = AbstractEvent

Invariants

@inv_Event1_type Event1⊆ TYPE(p1)

@inv_SomeEvent_type SomeEvent⊆ TYPE(p1) × TYPE(p2)

@inv_SomeEvent_seq dom(SomeEvent) ⊆ Event1

@inv_Event3_seq Event3⊆ dom(SomeEvent)

@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_SomeEvent_type SomeEvent⊆ TYPE(p2)

@inv_SomeEvent_seq SomeEvent ≠ ∅ ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ SomeEvent ≠ ∅

@inv_Event3_gluing Event3 = AbstractEvent

Invariants

@inv_Event1_type Event1⊆ TYPE(p1)

@inv_SomeEvent_type SomeEvent⊆ TYPE(p1) × TYPE(p2)

@inv_SomeEvent_seq dom(SomeEvent) ⊆ Event1

@inv_Event3_seq Event3⊆ dom(SomeEvent)

@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events: Multiple Instance(MI) Events:

event Event1

where

@grd Event1 = FALSE

then

@act Event1≔ TRUE

end

event SomeEvent

any p2

where

@grd_seq Event1 = TRUE

@grd p2 ∉ SomeEvent

then

@act SomeEvent≔ SomeEvent ∪ { p2 }

end

event Event3 refines AbstractEvent

where

@grd_seq SomeEvent ≠ ∅

@grd Event3 = FALSE

then

@act Event3≔ TRUE

end

event Event1

any p where

@grd p ∉ Event1

then

@act_Event1 Event1≔ Event1 ∪ { p }

end

event SomeEvent

any p1 p2

where

@grd_seq p1 ∈ Event1

@grd p1 ↦ p2 ∉ SomeEvent

then

@act SomeEvent≔ SomeEvent ∪ { p1 ↦ p2 }

end

event Event3 refines AbstractEvent

any p1

where

@grd_seq p1 ∈ dom(SomeEvent)

@grd p1 ∉ Event3

then

@act Event3≔ Event3 ∪ { p1 }

end

Table 2.7: some-replicator Pattern

Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features 31

Event Execution Trace Examples:

Considering the SI case diagram in Table 2.7, assume p2 ∈ {a, b}, the event traces of

the model are as follows:

< Event1, AllEvent(a), AllEvent(b), Event3 >

< Event1, AllEvent(b), AllEvent(a), Event3 >

< Event1, AllEvent(a), Event3 >

< Event1, AllEvent(b), Event3 >

The number of the some-replicator event execution is always less than or equal to the car-

dinality of the some-replicator parameter’s type set. In above event traces, SomeEvent

executes for one or two times, since card({a, b}) = 2.

2.2.9 one-replicator Pattern

The one-replicator pattern is presented in Table 2.8. The table interpretation is the same

as what was described in term of sequence pattern table interpretation in Section 2.2.2.

Intention: The intention is to execute a sub-event for exactly one instance of a new

parameter, in the right place in the sequence of other sub-events. The one-replicator is

a generalisation of the xor-constructor.

Diagrammatic Representation: The one-replicator is presented with a circle con-

taining one flowed by name of a new parameter. Following the single solid line rule, the

one-replicator can be connected to the root event with either dashed line of solid line,

since the one-replicator event can execute for only one instance.

Event-B Model:

The encoded Event-B model for the one-replicator pattern is presented in Table 2.8. The

one-replicator parameter, p2, is added to the sub-event connected to the one-replicator,

OneEvent, as a new dimension.

Type of generated control variable for the one-replicator event is defined with an invari-

ant as described in the all-replicator pattern.

The event after the one-replicator event in the sequence, Event3, can execute only after

execution of the one-replicator event, OneEvent, for exactly one of the instances of

the new parameter, p2. The sequencing guard in event Event3 is same as the one in

the some-replicator pattern. In order to restrict the number of the one-replicator event

executions, we provide a guard in the one-replicator event. Considering the SI case, the

guard (OneEvent = ∅) in event OneEvent ensures that event OneEvent can execute

32 Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features

only for one time. And in the MI case, guard (p1 /∈ dom(OneEvent)) ensures that for

p1, event OneEvent can execute only for one instance of p2.

An invariant is generated to show that the one-replicator event can execute only for one

time (for each instance of event parameter in the MI case). In the SI case,

(card(OneEvent) 6 1), and the MI case, invariant (∀ p.card(OneEvent[{p}]) 6 1).

A gluing invariant is generated for the one-replicator with the solid line. The gluing

invariant in the SI case and the MI case respectively are as follows:

OneEvent 6= ∅⇔ AbstractEvent = TRUE

dom(OneEvent) = AbstractEvent

Event Execution Trace Examples:

Considering the SI case diagram in Table 2.8, assume p2 ∈ {a, b}, the event traces of

the model are as follows:

< Event1, OneEvent(a), Event3 >

< Event1, OneEvent(b), Event3 >

The one-replicator event can execute exactly for one instance of the new parameter.

Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features 33

Name: one-replicator

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent

OneEvent (p2)

AbstractEvent (p1)

OneEvent (p1, p2)

one(p2)

one(p2)

Event1 Event3

Event1 (p1) Event3 (p1)

AbstractEvent

OneEvent (p2)

AbstractEvent (p1)

OneEvent (p1, p2)

one(p2)

one(p2)

Event1 Event3

Event1 (p1) Event3 (p1)

Event-B Model

Single Instance(SI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_OneEvent_type OneEvent⊆ TYPE(p2)

@inv_OneEvent_seq OneEvent ≠ ∅ ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ OneEvent ≠ ∅

@inv_OneEvent_one card(OneEvent) ≤ 1

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p1)

@inv_OneEvent_type OneEvent⊆ TYPE(p1) × TYPE(p2)

@inv_OneEvent_seq dom(OneEvent) ⊆ Event1

@inv_Event3_seq Event3⊆ dom(OneEvent)

@inv_OneEvent_one ∀p· card(OneEvent [{p}]) ≤ 1

@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_OneEvent_type OneEvent⊆ TYPE(p2)

@inv_OneEvent_seq OneEvent ≠ ∅ ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ OneEvent ≠ ∅

@inv_OneEvent_one card(OneEvent) ≤ 1

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p1)

@inv_OneEvent_type OneEvent⊆ TYPE(p1) × TYPE(p2)

@inv_OneEvent_seq dom(OneEvent) ⊆ Event1

@inv_Event3_seq Event3⊆ dom(OneEvent)

@inv_OneEvent_one ∀p· card(OneEvent [{p}]) ≤ 1

@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events: Multiple Instance(MI) Events:

event Event1

where

@grd Event1 = FALSE

then

@act Event1≔ TRUE

end

event OneEvent

any p2

where

@grd_seq Event1 = TRUE

@grd p2 ∉ OneEvent

@grd_one OneEvent = ∅

then

@act OneEvent≔ OneEvent ∪ { p2 }

end

event Event3 refines AbstractEvent

where

@grd_seq OneEvent ≠ ∅

@grd Event3 = FALSE

then

@act Event3≔ TRUE

end

event Event1

any p where

@grd p ∉ Event1

then

@act_Event1 Event1≔ Event1 ∪ { p }

end

event OneEvent

any p1 p2

where

@grd_seq p1 ∈ Event1

@grd p1 ↦ p2 ∉ SomeEvent

@grd_one p1 ∉ dom(OneEvent)

then

@act OneEvent≔ OneEvent ∪ { p1 ↦ p2 }

end

event Event3 refines AbstractEvent

any p1

where

@grd_seq p1 ∈ dom(OneEvent)

@grd p1 ∉ Event3

then

@act Event3≔ Event3 ∪ { p1 }

end

Table 2.8: one-replicator Pattern

34 Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features

2.3 Additional Features of the Atomicity Decomposition

Approach

2.3.1 The Most Abstract Level

The most abstract level of an Event-B model is illustrated in a diagram that aids un-

derstanding, shown in Figure 2.1. The name of a process in the system appears in an

oval as the root node, and the names of most abstract events appear in the leaves in

order from left to right. All lines have to be dashed lines, since all of leaves are the

most abstract events and do not refine the root node. The Event-B model is the same

as presented in patterns, Section 2.2. The only difference is that in the most abstract

level, there is no refining event (no solid line) and no gluing invariant in the Event-B

model.

Event 1 Event n… Event 1 (p1, …, pn) Event n (p1, …, pn)…

ProcessName ProcessName (p1, …, pn)

Figure 2.1: The Most Abstract Level Diagrams

2.3.2 Combined Atomicity Decomposition Diagram

In an atomicity decomposition diagram, root node, AbstractEvent in described patterns

in Section 2.2, is one of the events in (i)th refinement level which decomposed into some

sub-events in (i+1)th refinement level. Later each sub-events can be further decomposed

to some other sub-events in the next refinement level, (i+2)th refinement level, and so on.

The reason in the patterns we called the root node, AbstractEvent, is that comparing

with sub-events, AbstractEvent is placed in an earlier level of refinement which can be

considered as an abstract level for the sub-events refinement level.

Starting from the most abstract level diagram, the atomicity decomposition diagrams

for different events can be combined in a single diagram. An example is illustrated in

Figure 2.2. In this example, there are four abstract events, Event1, Event2, Event3 and

Event4, in the most abstract level. In the first refinement level, Event2 is decomposed

to Event5 followed by one instance of Event6. Also Event4 is decomposed to three

sequential sub-events, Event7, followed by a loop constructor applied to Event8, followed

by Event9.

Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features 35

Event 1 Event 4

ProcessName

Event 2

and

Event 3

The Most Abstract Level

1st Refinement

nth Refinement

Event 6 (p1)

one(p1)

Event 5 Event 8

*

Event 7 Event 9

ith Refinement

………..

………..

… …

… …

… …

Figure 2.2: Combined Atomicity Decomposition Diagram

The combined atomicity decomposition diagram provides the overall visualization of

the refinement structure. In a combined atomicity decomposition diagram, each leaf

is encoded as one event in the Event-B model. A leaf is a node without any child.

For example, in the first refinement level of Figure 2.2, the leaves are Event1, Event5,

Event6, Event3, Event7, Event8, Event9.

The general atomicity decomposition language which describes the structure of the com-

bined atomicity decomposition diagram and translation rules to the Event-B model are

presented in Chapter 2.

2.3.3 Several Atomicity Decompositions for a Single Event

A single event can be decomposed to some sub-events in different styles. In other words

several atomicity decomposition diagrams can be defined for a same root node. An

example is illustrated in Figure 2.3. Event a is decomposed in two different diagrams

in the next refinement level. The Event-B model follows the rules that presented in

patterns, Section 2.2.

2.3.4 Strong Sequencing versus Weak Sequencing

In a combined atomicity decomposition diagram, there are two approaches of sequencing

applied to a single root event: Strong Sequencing and Weak Sequencing. Strong/weak

sequencing property is applied to each single atomicity decomposition of a root event.

If strong sequencing is applied to a root event, then there is a sequencing between all

36 Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features

Event_a

Event_b Event_c

Event_a

Event_loop

*

Event_d Event_c

Figure 2.3: Several Atomicity Decomposition for a Single Event, Event a

sub-events of that root and the previous and next sub-events of the earlier refinement

level. Whereas in the case of weak sequencing, the sequencing is applied only to the

sub-event with solid line of the root and the previous and next sub-events of the earlier

refinement level.

To make the point clear, an example of a combined atomicity decomposition diagram is

presented in Figure 2.4. Event a is decomposed to four sub-events, Event b, Event c,

Event d and Event a, in (i)th refinement level. Then Event c is decomposed to three

sub-events, Event f , Event c and Event g in (i + 1)th refinement level.

Event_a

Event_b Event_aEvent_c

Event_f Event_gEvent_c

Weak Sequencing

Strong Sequencing

Event_d

Figure 2.4: Strong Sequencing, Weak Sequencing

Assume atomicity decomposition of Event c root event has strong sequencing, then the

only possible event trace is:

< Event b, Event f, Event c, Event g,Event d,Event a >

Whereas if atomicity decomposition of Event c has weak sequencing, then on one hand

there is an ordering just between the leaf with solid line, Event c and the previous and

next leaves in sequence, Event b and Event d respectively. And on the other hand

there is no ordering constraints between Event b and Event f , and between Event g

and Event d. Therefore, because of weak sequencing, there are more than one possible

event trace:

Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features 37

< Event b, Event f, Event c, Event g,Event d,Event a >

< Event b, Event f, Event c, Event d,Event g,Event a >

< Event f,Event b, Event c, Event g,Event d,Event a >

< Event f,Event b, Event c, Event d,Event g,Event a >

In all of possible event traces, Event c executes after execution of Event b, before

Event d. It is important to mention that in a single atomicity decomposition, there

is always an ordering between sub-events of the root event, in both strong and weak

sequencing approaches. For example, Event f , Event c and Event g always execute

in order.

The weak and strong sequencing is managed with some invariants and guards. The

general translation rules to the Event-B model are presented in Chapter 2.

The most abstract atomicity decomposition diagram always has a strong sequencing,

since the most abstract diagram is placed in the top level of combined an atomicity

decomposition diagram.

2.3.5 Loop Resetting Event

As described in the Loop Pattern in Section 2.2.3, if the loop event is a single event, then

we do not consider a variable for the loop event. Considering the example in Figure 2.5,

in decomposing the atomicity of Event a, Event c can execute zero or more time before

execution of Event d. And the execution of Event d here, does not depend on the loop

execution.

In the next refinement level, the loop event is decomposed to some sub-events. So we

have to consider some control variables to manage the ordering between the loop events,

Event e, Event f and Event g. Also a resetting event is needed to reset the loop control

variables to enable more than one execution of the loop. Furthermore an extra guard

is needed in Event d to ensure that Event d does not execute in the middle of the

execution of the loop events.

Loop resetting can be done in three ways. Each of them for the example in Figure 2.5,

is illustrated with a state diagram and its Event-B model in Figure 2.6, Figure 2.7 and

Figure 2.8.

First, as illustrated in Figure 2.6, the reset event is considered as a separate event, called

Reset here. The ordering between loop events are managed with some control variables,

Event e, Event f and Event g. The first event in the Loop, Event e checks that the next

event after the loop has not execute before, (Event d = FALSE). A guard in Event d

ensures that it can not execute in the middle of the loop, (Event e = FALSE).

38 Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features

Event_a

Event_b Event_dEvent_c

Event_e Event_gEvent_f

*

event Event_b where Event_b = FALSE then Event_b ≔ TRUE end

event Event_c where Event_b = TRUE ∧

Event_d = FALSE

then skip end

event Event_d where Event_b = TRUE ∧

Event_d = FALSE

then Event_d ≔ TRUE end

Figure 2.5: Loop Resetting Example

Event_e = FALSE

Event_f = FALSE

Event_g = FALSE

Event_e = TRUE

Event_f = FALSE

Event_g = FALSE

Event_e = TRUE

Event_f = TRUE

Event_g = FALSE

Event_b

Event_d

Event_e

Event_fEvent_g

event Event_e where Event_b = TRUE ∧ Event_d = FALSE ∧ Event_e = FALSE then Event_e ≔ TRUE end

event Event_f where Event_e = TRUE ∧ Event_f = FALSE then Event_f≔ TRUE end

event Event_g where Event_f = TRUE ∧ Event_g = FALSE then Event_g≔ TRUE end

event Reset where Event_g = TRUE then Event_e≔ FALSE,

Event_f ≔ FALSE,

Event_g ≔ FALSE end

event Event_d where Event_b = TRUE ∧ Event_e = FALSE ∧ Event_d = FALSE then Event_d ≔ TRUE end

Event_e = TRUE

Event_f = TRUE

Event_g = TRUE

Reset

Figure 2.6: Loop Resetting as a Separate Event

Second, as illustrated in Figure 2.7, the resetting is merged in the last event of the loop,

Event g. In this case we do not need a control variable for the last event, since the last

event resets the loop.

Last, as illustrated in Figure 2.8, the resetting is merged in the first event of the loop,

Event e. In this case we have to consider a separate event for the first event of the loop,

Event e1. The resetting is done in Event e2. In this case Event d ’s guard is complex,

since we need to consider two cases. First zero execution of the loop, (Event e =

FALSE) and second, one or more execution(s) of the loop, (Event g = TRUE).

We adopted the separate resetting event for the loop in Figure 2.6. Considering the

example in Figure 2.9, assume the case when the first sub-event in decomposing the

Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features 39

Event_e = FALSE

Event_f = FALSE

Event_e = TRUE

Event_f = FALSE

Event_e = TRUE

Event_f = TRUE

Event_b

Event_d

Event_e

Event_f

Event_g

event Event_e where Event_b = TRUE ∧ Event_d = FALSE ∧ Event_e = FALSE then Event_e ≔ TRUE end

event Event_f where Event_e = TRUE ∧ Event_f = FALSE then Event_f ≔ TRUE end

event Event_g where Event_f = TRUE then Event_e ≔ FALSE,

Event_f≔ FALSE end

event Event_d where Event_b = TRUE ∧ Event_e = FALSE ∧ Event_d = FALSE then Event_d ≔ TRUE end

Figure 2.7: Loop Resetting in the Last Event

Event_e = FALSE

Event_f = FALSE

Event_g = FALSE

Event_e = TRUE

Event_f = FALSE

Event_g = FALSE

Event_e = TRUE

Event_f = TRUE

Event_g = FALSE

Event_b

Event_d

Event_e1

Event_fEvent_g

event Event_e1 where Event_b =TRUE ∧ Event_d=FALSE ∧ Event_e =FALSE then Event_e≔ TRUE end

event Event_e2 where Event_g = TRUE ∧ Event_d= FALSE then Event_f≔ FALSE,

Event_g≔ FALSE end

event Event_f where Event_e = TRUE ∧ Event_f = FALSE then Event_f≔ TRUE end

event Event_g where Event_f = TRUE ∧ Event_g = FALSE then Event_g≔ TRUE end

event Event_d where Event_b = TRUE ∧ (Event_e = FALSE ∨ Event_g = TRUE) ∧ Event_d = FALSE

then Event_d ≔ TRUE end

Event_e = TRUE

Event_f = TRUE

Event_g = TRUE

Event_e2

Event_d

Figure 2.8: Loop Resetting in the First Event

40 Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features

loop event, Event c, is either the and-constructor or the or-constructor or the xor-

constructor. Then the resetting approach presented in Figure 2.8, needs to be applied

to all of the constructor children, Event e and Event f here. Also in the resetting

approach presented in Figure 2.7, if the last sub-event is either the and-constructor or

the or-constructor or the xor-constructor, then the resetting needs to be applied to all

of the constructor children, and this can make the Event-B model large and complex

comparing to the approach when we provide the separate resetting event.

Event_a

Event_b Event_dEvent_c

Event_e Event_hEvent_g

*

and

Event_f

Figure 2.9: Loop Resetting Example

Using a separate event to reset loop, the Event-B model of the example presented in

Figure 2.5, is presented in Figure 2.10, in the MI case (having one parameter).

event Event_e where p1 ∈ Event_b ∧ p1 ∉ Event_d ∧ p1 ∉ Event_e then Event_e ≔ Event_e ∪ { p1}

event Event_f where p1 ∈ Event_e ∧ p1 ∉ Event_f then Event_f ≔ Event_f ∪ { p1} end

event Event_g where p1 ∈ Event_f ∧ p1 ∉ Event_g then Event_g ≔ Event_g ∪ { p1} end

event Reset where p1 ∈ Event_g then Event_e ≔ Event_e / { p1},

Event_f ≔ Event_f / { p1},

Event_g ≔ Event_g / { p1} end

event Event_d where p1 ∈ Event_b ∧ p1 ∉ Event_e ∧ p1 ∉ Event_d then Event_d ≔ Event_d ∪ { p1}

Figure 2.10: Loop Resetting with Parameter

2.4 Conclusion

Several atomicity decomposition constructors, which were discovered during case study

developments, have been presented in this chapter. A pattern-based style was used to

present the atomicity decomposition constructors. Each pattern is defined to satisfy a

particular intention in decomposing the atomicity of an abstract event, and contains one

constructor in a single level of refinement. Each pattern is encoded in terms of Event-B

using some variables, invariants, events, guards and actions. The diagrammatic notation

Chapter 2 Atomicity Decomposition Part 2 - Patterns and Features 41

of a constructor and corresponding encoded Event-B model are presented both for single

instance (SI) execution of an event and multiple instance (MI) execution.

In total eight constructors were presented as follows:

• The intention to model a sequential execution of two or more events is represented

by the Sequence pattern.

• The Loop pattern represents zero or more execution of an event.

• The logical constructor patterns (and-constructor, or-constructor and xor-construct-

or) model a logical execution between two or more events.

• The replicator patterns, all-replicator, some-replicator and one-replicator, are gen-

eralisations of the logical constructor patterns, and-constructor, or-constructor and

xor-constructor, respectively.

Each pattern contains three children in decomposition of an abstract event in one re-

finement level. In all patterns, except the sequence pattern, the middle sub-event is a

loop or a logical constructor or a replicator.

References

[1] Butler, M. J. Decomposition Structures for Event-B. In Integrated Formal Methods

iFM2009 (2009). URL http://deploy-eprints.ecs.soton.ac.uk/51/.

[2] Jones, C. B. Systematic software development using VDM (2nd ed.) (Prentice-Hall,

Inc., 1990). URL http://portal.acm.org/citation.cfm?id=94062.

[3] Butler, M. J. Incremental Design of Distributed Systems with Event-B. In Marktober-

dorf Summer School 2008 Lecture Notes (IoS, 2008). URL http://deploy-eprints.

ecs.soton.ac.uk/49/.

43

http://deploy-eprints.ecs.soton.ac.uk/51/
http://portal.acm.org/citation.cfm?id=94062
http://deploy-eprints.ecs.soton.ac.uk/49/
http://deploy-eprints.ecs.soton.ac.uk/49/

	1 Atomicity Decomposition Part 1 - Overview and Background
	1.1 Introduction
	1.2 Overview of Atomicity Decomposition Diagram in Event-B
	1.3 Event-B Refinement and Atomicity Decomposition Diagrams
	1.4 Examples of Application
	1.5 Conclusion

	2 Atomicity Decomposition Part 2 - Patterns and Features
	2.1 Introduction
	2.2 Atomicity Decomposition Diagram Patterns
	2.2.1 Introduction
	2.2.2 Sequence Pattern
	2.2.3 Loop Pattern
	2.2.4 and-constructor Pattern
	2.2.5 or-constructor Pattern, Multiple Choice
	2.2.6 xor-constructor Pattern, Exclusive Choice
	2.2.7 all-replicator Pattern
	2.2.8 some-replicator Pattern
	2.2.9 one-replicator Pattern

	2.3 Additional Features of the Atomicity Decomposition Approach
	2.3.1 The Most Abstract Level
	2.3.2 Combined Atomicity Decomposition Diagram
	2.3.3 Several Atomicity Decompositions for a Single Event
	2.3.4 Strong Sequencing versus Weak Sequencing
	2.3.5 Loop Resetting Event

	2.4 Conclusion

	References

