C)ce’ric

Your Connection to ICT Research

Building Event-B Interlocking Theories

Lessons Learned Using the Theory Plug-in
23/05/2016

Yoann Guyot Renaud De Landtsheer Christophe Ponsard

PLUS HAUT ;
ET PLUS PROCHE
el L Centre d’Excellence en Technologies de
é@ 'Information et de la Communication
L 4

Wallonie WWW.CetIC.be

I .
Who Am | ? Ocetic

OOOOO

Yet another formal methods research engineer...

...with a bit of interest in the event-b method.

Before @ Systerel
Coded for the SMT Solvers Plug-in of Rodin

Nowadays @ CETIC : Technology Transfert
Experimenting with the Theory Plug-in of Rodin

www.cetic.be

What is an Interlocking ? Ocetic

oooooooooooooooooooooooooo

A Railway Signalling System

- i~

www.cetic.be

| .
What is an Interlocking ? Ocetic

oooooooooooooooooooooooooo

A Railway Signalling System

- i~

www.cetic.be

| .
What is an Interlocking ? Ocetic

tion to ICT Researd h

A Railway Signalling System

Controls railway network objects
when requests are acceptable :
- sets points in expected positions

i

www.cetic.be

| .
What is an Interlocking ? Ocetic

tion to ICT Researd h

A Railway Signalling System

Controls railway network objects
when requests are acceptable :
- sets points in expected positions

- opens/closes signals to give/deny
access to the routes

t\l/J__r

www.cetic.be

| .
What is an Interlocking ? Ocetic

tion to ICT Researd h

A Railway Signalling System

Controls railway network objects
when requests are acceptable :
- sets points in expected positions

- opens/closes signals to give/deny
access to the routes

E\L__r
"

Trains move on the network without colliding with each others
nor derailing...

www.cetic.be

I .
Who Makes Interlockings ? Ocetic

OOOOO

Signalling engineers...

* possess the historical knowledge
* incrementally design new interlockings
* directly produce specific code
based on generic programming rules
* validate by reviewing and testing

www.cetic.be

Who Makes Interlockings ?

Signalling engineers...

possess the historical knowledge
incrementally design new interlockings
directly produce specific code

based on generic programming rules
validate by reviewing and testing

What about mathematical
proof of safety ?

are generally not fluent in formal methods
are especially not event-b lovers

OOOOO

www.cetic.be

Outline Ocetic

How to Bring These Worlds Together
Use the Theory Plug-in of Rodin*

“Cover up those mathematical expressions which i cannot endure...” 2

Defining Interlocking Theories

Reducing the Proof Effort

Modeling a Safe Interlocking Using the Event-B Theory Plug-in, M-T. Khuu, L. Voisin and F. Mejia

2(almost) Moliére’s Tartuffe

www.cetic.be

C)cetic

oooooooooooooooooooooooooo

Covering Mathematical Expressions

I .
The Famous Train Example First Context Ocetic

Your Connection to ICT Research

axml: blocks_routes € BLOCKS <« ROUTES

axma2: dom(blocks_routes) = BLOCKS

axm3: ran(blocks_routes) = ROUTES

axm4: next € ROUTES — (BLOCKS [BLOCKS)

axmb5: fst € ROUTES — BLOCKS

axmeé6: last € ROUTES — BLOCKS

axm?7: fst~ € blocks_routes

axm8: last~ € blocks_routes

axm9: Vr-r € ROUTES = fst(r) # last(r)

axm10: Vr-r € ROUTES = next(r) € blocks_routes~[{r}] \ {last(r)} [I blocks_routes~[{r}] \ {fst(r)}

axmll: Vr-r € ROUTES = (VS-S & next(r)[S] = S=9)
axm12: Vrl,r2-rl € ROUTES A r2 € ROUTES A r1 #r2

= fst(rl) ¢ blocks_routes~[{r2}] \ {fst(r2), last(r2)}
axm13: Vrl,r2-rl € ROUTES A r2 € ROUTES A r1 #r2

= last(rl) € blocks_routes~[{r2}] \ {fst(r2), last(r2)}

www.cetic.be

I .
The Famous Train Example First Context Ocetic

Your Connection to ICT Research

axml: blocks_routes € BLOCKS «» ROUTES e Objects definitions

axma2: dom(blocks_routes) = BLOCKS

axm3: ran(blocks=routes) = ROUTES

axmé: next € ROUTES — (BLOCKS [BLOCKS) Operators for manipulating the objects
axmb5: fst € ROUTES — BLOCKS

axmeé6: last € ROUTES — BLOCKS

axm7: fst~ C blocks_routes Expected properties of the objects
axm8: last~ < blocks_routes /

axm9: Vr-r € ROUTES = fst(r) # last(r)

axm10: Vr-r € ROUTES = next(r) € blocks_routes~[{r}] \ {last(r)} [I blocks_routes~[{r}] \ {fst(r)}

axmll: Vr-r € ROUTES = (VS-S & next(r)[S] = S=9)
axm12: Vrl,r2-rl € ROUTES A r2 € ROUTES A r1 #r2

= fst(rl) ¢ blocks_routes~[{r2}] \ {fst(r2), last(r2)}
axm13: Vrl,r2-rl € ROUTES A r2 € ROUTES A r1 #r2

= last(rl) € blocks_routes~[{r2}] \ {fst(r2), last(r2)}

www.cetic.be

Oceti
What Is Our Goal ? Ocetic

OOOOO

Be as close as possible to the signaling engineers usage:

Implicit objects definitions (blocks, routes, signals...)
Implicit operators definitions (reserve, lock, open...)
Rich DSL

Implicit objects basic properties

Just model this interlocking.

www.cetic.be

I .
The Famous Train Example First Context Ocetic

Your Connection to ICT Research

axml: blocks_routes € BLOCKS <« ROUTES

axma2: dom(blocks_routes) = BLOCKS

axm3: ran(blocks_routes) = ROUTES

axm4: next € ROUTES — (BLOCKS [BLOCKS)

axmb5: fst € ROUTES — BLOCKS

axmeé6: last € ROUTES — BLOCKS

axm?7: fst~ € blocks_routes

axm8: last~ € blocks_routes

axm9: Vr-r € ROUTES = fst(r) # last(r)

axm10: Vr-r € ROUTES = next(r) € blocks_routes~[{r}] \ {last(r)} [I blocks_routes~[{r}] \ {fst(r)}

axmll: Vr-r € ROUTES = (VS-S & next(r)[S] = S=9)
axm12: Vrl,r2-rl € ROUTES A r2 € ROUTES A r1 #r2

= fst(rl) ¢ blocks_routes~[{r2}] \ {fst(r2), last(r2)}
axm13: Vrl,r2-rl € ROUTES A r2 € ROUTES A r1 #r2

= last(rl) € blocks_routes~[{r2}] \ {fst(r2), last(r2)}

www.cetic.be

Using Our Theories Ocetic

Your Connection to ICT Researd h

axml: ROUTES <€ routes(BLOCKS)
axma2: wellFormedRoutes(ROUTES)

www.cetic.be

Using Our Theories Ocetic

Your Connection to ICT Researd

Concrete set of routes (event-b constant)

Definition of routes constructor is hidden in the theories

// Concrete set of blocks (event-b constant)

axml: ROUTES <€ routes(BLOCKS)
axma2: wellFormedRoutes(ROUTES)

S

Additional properties of routes
e routes don’t start in the middle of others
e routes don’t end in the middle of others

www.cetic.be

Your Connection to ICT Research

I .
The Famous Train Example First Machine Ocetic

Without Theories Using Our Theories
route_reservation: route_reservation:
ANY r WHERE ANY r WHERE
r € res_routes r € ROUTES

- isReserved(r, res_routes)

blocks_routes~[{r}] N res_blocks =2 noReservedBlocks(r, res_routes)
THEN THEN
res_routes =res_routes U {r} res_routes = res_routes U completeRes(r)

resbl_resrt = resbl_resrt U (blocks_routes > {r})
res_blocks = res_blocks U blocks_routes~[{r}]

END END

www.cetic.be

C)cetic

oooooooooooooooooooooooooo

Defining Interlocking Theories

Interlocking Theories Dependencies Ocetic

oooooooooooooooooooooooooo

Trains Points

Interlocking + ¢ S
Theories Route S g

Reservation | o Routes

SubChains —» chains
Intermediate *
Theories *

SubSeqs —— MoreSeqs

Y

Seq

Basic Theories
(official package)

www.cetic.be

Chains

C)cetic

oooooooooooooooooooooooooo

Railway network is made of chains of blocks.

{clcEseq(S) Ac~ T2}

equivalent to iseq

garantees that there is no cycle

Operators:

* chains (constructor)
* chainSize .
* emptyChain .
* chainFst / Last / Tail

e chainPrev / Next

e chainPrepend / Append

Theorems:

chainlsFinite
chainlsMonotonic
nextlsInRange
chainTaillsChain

chainPrependlsChain

www.cetic.be

Routes Ocetic

Your Connec tion to ICT Research

Routes are chains of at least two blocks.
{c | c € chains(blocks) A card(c)>1}

Operators: Theorems:

* routes (constructor) * routelsFinite

* blcks * routelsMonotonic
* routelength

* routeFst / Last / Tail ° routelsFunc

* routePrev / Next * routeDomain

* starts / endsinTheMiddle

* wellFormedRoutes * routelsChain

www.cetic.be

| .
Routes (How To Use It ?) Ocetic

oooooooooooooooooooooooooo

Routes are chains of at least two blocks.
{c | c € chains(blocks) A card(c)>1}

° risaroute r € routes(BLOCKS)
 bisablockofr b € blcks(r)
* first block of r routeFst(r)
* block afterbonr routeNext({b}, r)
* rl starts in the middle of r2 startsinTheMiddle(r1, r2)
* Ris a set of routes R € routes(BLOCKS)
* norouteinR ends
in the middle of another routesDontEndInTheMiddle(R)

www.cetic.be

Subchains Ocetic

oooooooooooooooooooooooooo

Routes reservations and trains are subchains of routes.
{sub | sub € chains(T) A subChain(sub, c) }

Theorems:

e subChainlsChain
+ subChain (constructor) * frontSubChainlsSubChain
* subChains (constructor) * backSubChainlsSubChain

* frontSubChains (constructor) « chainTaillsABackSubChain
* backSubChains (constructor)

Operators:

e chainTail

www.cetic.be

Subchains (How To Use It ?) Ocetic

oooooooooooooooooooooooooo

Routes reservations and trains (routes occupation) are subchains
of routes.

{sub | sub € chains(T) A subChain(sub, c) }

* rlis asubchain of r2 subChain(rl, r2)

e set of subchains of r subChains(r)

* set of “front subchains” of r frontSubChains(r)
* set of “back subchains” of r backSubChains(r)

www.cetic.be

i .
Routes Reservations Ocetic

OOOOO

A theory for maintaining the set of routes reservations.
{r=b | r € routes(blocks) A b € backSubChains(r) }

Operators: Theorems:

* allRouteRes (constructor)

* validRouteRes (constructor)
* onlyOneResByRoute

e compatibleRoutesOnly

* wellFormedRouteRes

* blocksResForThisRoute

e jisReserved * onlyOneResByRouteTrans
* addToRouteRes » filterResUnion

* freeResHeadBlock

* routeReservationlsAFunction

routeResAreBackSubChains
addRouteResStillOnlyOne
* addRouteResStillCompatible

www.cetic.be

i .
Routes Reservations (How To Use It ?) Ocehc

OOOOO

A theory for maintaining the set of routes reservations.
{r=b | r € routes(blocks) A b € backSubChains(r) }

* the set of
route reservations res € validRouteRes(BLOCKS, ROUTES)
on the track
* only one reservation
can be made onlyOneResByRoute(res)
for each route
* a block cannot
be reserved twice compatibleRoutesOnly(res)

www.cetic.be

I .
Routes Reservations (How To Use It ?) chhc

oooooooooooooooooooooooooo

A theory for maintaining the set of routes reservations.
{r=b | r € routes(blocks) A b € backSubChains(r) }

r={bl; b2;...; bn}

Events Route Reservations
Initialisation {}
Reserver {r={bl;b2;...;bn}}
Enter route; Front moves... {r={bl;b2;...;bn}}
Back move {r={b2;...;bn}}
Back moves... {r~{}}
Freer {}

www.cetic.be

C)cetic

oooooooooooooooooooooooooo

Reducing the Proof Effort ?

Conclusion

I .
Current Status Ocetic

oooooooooooooooooooooooooo

Theorems defined = proof factorized.

Manual proof is easier, sometimes even trivial.

But only 40% POs automatically discharged in our theories and
models.

Defining theories does not naturally simplify the proof.

www.cetic.be

The Right Theorems... (future work) Ocetic

oooooooooooooooooooooooooo

How to define the right theorems ?

Suggestion:

1. define more theorems... a lot of them !
2. generalization of the theorems
3. simplification of the theorems

www.cetic.be

i .
Proof Strategies? (future work) Ocetic

OOOOO

Theorems not automatically applied: use strategies ?

How to define them ?

www.cetic.be

Discussion (1/2) Ocetic

Your Connection to ICT Researd

Infix predicates ?
e startsinTheMiddle(rl, r2) => r1 startsinTheMiddle r2

Type inference ?

* r € ROUTES
- isReserved(r, res_routes)

Local theories ? Using symbols that are local for a given project.
- jsReserved(r, res_routes)

Assignment operators ?
* res_routes=res_routes U completeRes(r)

www.cetic.be

I .
Discussion (2/2) Ocetic

* Theory instanciation?
* ex: Instantiate the Routes theory with the constant BLOCKS

* What about a Rodin plug-in for generating Domain Specific
Platforms (DSP) ?
1. Define the DSL using the Theory plug-in
2. Validate the DSL with signaling engineers
3. Generate the DSP
4. Let signaling engineers model their system

www.cetic.be

| .
(ODcetic Thanks

Your Connection to ICT Research

Aéropole de Charleroi-Gosselies
Avenue Jean Mermoz 28
B-6041 Charleroi - Belgique

A -

- A_Mguvet@ceti_s}g

twitter.com/@CETIC i A\
twitter.com/@CETIC _be E& = '

=

Iinkedin.com/company/cetic' |

o’

info@cetic.be

+32 71 490 700

www.cetic.be

