On Proving with Event-B that a Pipelined
Processor Model Implements its ISA
Specification

John Colley
Dependable Systems and Software Engineering
July 2009

sSupervisor
Michael Butler

UNIVERSITY OF
Southampton
School of Electronics
and Computer Science

Introduction

System-on-Chip (SoC) Microprocessors

Motivation

Instruction Set Architecture (ISA) Specification
Arithmetic Instruction Specification in Event-B
Deriving a Pipelined Implementation with Refinement

Summary and Future Work

UNIVERSITY OF
Southampton
School of Electronics

and Computer Science

System-on-Chip (SoC) Microprocessors

Typically 5-stage pipeline RISC
Based on DLX architecture
“Small is Beautiful” Kurt Keutzer, UCB, 2008

— Silicon Constraints

* Interconnect
 Power and Energy
 Variability
» Reliability
 Verifiability
Mobile Applications — ARM, MIPS

UNIVERSITY OF
Southampton
School of Electronics

and Computer Science

Motivation

Each pipeline stage is a process running concurrently
with all the other stages

Communication is by shared variables (pipeline registers)
New high-level languages speed up design

- Bluespec, CAL

- high-level synthesis to RTL

- based on Guarded Atomic Actions

But, verification is still

- performed on low-level, RTL description

- predominantly test-based Southaitipton

and Computer Science

Pipeline Verification Goals

Start Verification at the Specification Level

Explore Micro-Architectural Alternatives at the
Specification Level

Close the Gap between Specification and
Implementation

Exploit Synergy with Bluespec, CAL

Incorporate Proof-based techniques into the
established SoC Verification Flow

UNIVERSITY OF
Southampton
School of Electronics

and Computer Science

5-stage RISC SoC Processor

IF ID EX MEM WB
IFID
4 —» *I»
4>
—> IR6_10
IR11_15 .
——» | Registers
™| PC |=—"| Instruction o - Regs
Memory
IMem _
IR16 31

Generic Operations Pipeline Stages

Load Instruction Fetch (IF) [| - pipeline register
Store Instruction Decode (ID)

Branch Execute (EX)

ArithRR Memory Access (MEM) UNIVERSITY OF

Arithimm Writeback (WB) Southampton

School of Electronics
and Computer Science

Microprocessor Specification:
Term Rewriting Systems

tDefined as a tuple (S, R, So) where

- S is a set of terms
- R is a set of re-writing rules
- Sois a set of initial terms, So S

States: represented by TRS terms
Transitions: represented by TRS rules:-
s1 if p(s7)

s2

where s7 and s2 are terms and p is a predicate

Example : Microprocessor Op rule

Proc(pc, rf, im) if im[pc] = Rr:= Op(Ra, Rb)
Proc(pc + 1, rf[Rr:= v], im) where v := Op(rf[Ral], rf[Rb])

UNIVERSITY OF
T Using Term Rewriting Systems to Design and Verify Processors Southampton
Arvind and Shen, IEEE MICRO 1999 School of Electronics

and Computer Science

Microprocessor Specification:
Term Rewriting Systems

Operation specified as a
transformation
on-the processor registers

Proc(pc, rf, im) / if im[pc] = Rr:= Op(Ra, Rb)
Proc(pc + 1, rf[Rr:=v], im) where v := Op(rf[Ra], rf[Rb])

UNIVERSIT

Y OF
T Using Term Rewriting Systems to Design and Verify Processors Southampton
Arvind and Shen, IEEE MICRO 1999 School of Electronics

and Computer Science

Abstract Context: Arithmetic Instruction

context

constants Register Rr Ra Rb NOP ArithRROp

sets Op

axioms
@axml

PIPEC

Register ¢ N

Instruction Specification

Opcode Ra Rb Rr func

@axm2
@axm3
@axm4

Rr € Op — Register
Ra € Op — Register
Rb € Op — Register

@axm5

@axmo6

@axm/
end

ArithRROp c Op
NOP € Opcode
NOP ¢ ArithRROp

T A proposal for records in Event-B
Evans and Butler, Lecture Notes in Computer Science, 2006

UNIVERSITY OF

Southampton

School of Electronics
and Computer Science

Abstract Machine: Arithmetic Instruction

machine PIPEM sees PIPEC

variables Regs WBop Instruction Specification

invariants

@invl Regs € Register — Z ADD Rr, Ra, Rb

|
\

event ArithRR \\

any pop
where

@grdl pop € ArithRROp
then

Regs[Rr] <- Regs[Ra] + Regs[Rb]

@actl Regs(Rr(pop)) = Regs(Ra(pop)) + Regs(Rb(pop))

end
end

UNIVERSITY OF

Southampton

School of Electronics
and Computer Science

Abstract Machine: Microarchitecture

pop

event ArithRR
any pop
where
@grdl pop € ArithRROp
then
@actl Regs(Rr(pop)) = Regs(Ra(pop)) + Regs(Rb(pop))
@act2 WBop = pop
end
UNIVERSITY OF

Southampton

School of Electronics
and Computer Science

Refinement: 2-stage pipeline (EXecute and
WriteBack)

H®\I/.<!

event EX event WB refines ArithRR
any ppop where
where . @grdl EXop € ArithRROp
@grdl ppop € ArithRROp with
then @pop pop = EXop
@actl EXALUoutput := Regs(Ra(ppop)) + Regs(Rb(ppop)) then
; @act2 EXop = ppop @actl Regs(Rr(EXop)) = EXALUoutput
en

@act2 WBop = EXop UNIVERSITY OF
end Southampton

School of Electronics
and Computer Science

Refinement: 2-stage pipeline (EXecute and
e WriteBack)

@ INITIALISATION factl /SIM
@" Exjactl/wD

@" WB/grd1/GRD

@" WB/actl/wD

@" WB/actl/sIM
@" WBjact2 /SIM
ppop——B> @ — S

event EX event WB refines ArithRR
any ppop where
where _ @grdl EXop € ArithRROp
@grdl ppop € ArithRROp with
then @pop pop = EXop
@actl EXALUoutput = Regs(Ra(ppop)) + Regs(Rb(ppop)) then
@act2 EXop = ppop @actl Regs(Rr(EXop)) = EXALUoutput
end @act2 WBop = EXop
UNIVERSITY OF
end Southampton

School of Electronics
and Computer Science

Pipeline Feedback and Interleaving

(a) ppop %@HI%@H

E2followed by E7 (EZ2;E1)is equivalentto E7 [EZ

\
() oo H®Hlﬂ®ﬂ —

There is NO Interleaving that represents E7 /] EZ

UNIVERSITY OF

Southampton

School of Electronics
and Computer Science

Consider Sequential Execution’

ppop——»> ﬂ\)—»
|

variant {WBOp} n {EXop}

v \
EXop WBop

e —» Regs

~C O ~C OCIHX>XMm

convergent event EX event WB refines ArithRR
any ppop where
where @grdl EXop € ArithRROp
@grdl ppop € ArithRROp @grd2 WBop # EXop
@grd2 ppop # EXop with
@grd3 WBop = EXop @pop pop = EXop
then then
@actl EXALUoutput = Regs(Ra(ppop)) + Regs(Rb(ppop)) @actl Regs(Rr(EXop)) = EXALUoutput
@act2 EXop = ppop @act2 WBop = EXop UNIVERSITY OF
end end Southampton
'I' Computer Architecture: Complexity and Correctness School of Electronics

and Computer Science

Mdaller and Paul, Springer, 2000

Sequential Execution: Discovering the

Invariant
ﬂﬁm >E< Apm

. EXALUoutput = Regs(Ra(EXop)) + Regs(Rb(EXop)) 7
U

ppop————»> EX -~ » o0 | ——» WB — > Regs| ——
¢
;‘ p
variant {WBop} n {EXop} “

\ ,/xvlg
\ EXop WBop

convergent event EX event WB refines ArithRR

any ppop where

where @grdl EXop € ArithRROp
@grdl ppop € ArithRROp @grd2 WBop # EXop
@grd2 ppop # EXop with
@grd3 WBop = EXop @pop pop = EXop

then then
@actl EXALUoutput = Regs(Ra(ppop)) + Regs(Rb(ppop)) @actl Regs(Rr(EXop)) = EXALUoutput
@act2 EXop = ppop @act2 WBop = EXop

UNIVERSITY OF

end end Southampton

School of Electronics
and Computer Science

Sequential Execution: Discovering the
Invariant

e e

E
7 ! X 7 !
| | 4
| EXAEUQutput f{egs(Ra(EXop)) + Regs(Rb(E)(op))
) \ U) \
ppop——B> EX —P» 0o | P WB —® |Regs| ——
v @ Proof Obligations
. ‘ @" inv3 WD
variant {WBop} n {EXop} G" FIN
N A/ " INITIALISATION /inv3 /INV
~ " EX/inv3/INY
@" EXjactl /WD
@" EX/VAR WBop
@" WB/inv3/INV
convergent event EX @' WB/grd1/GRD vent WB refines ArithRR
%" WB/actl/wD
any ppop &" wB/act1/sIM where
where G WB/act2 /SIM @grdl EXop € ArithRROp
@grdl ppop € ArithRROp @grd2 WBop # EXop
@grd2 ppop # EXop with
@grd3 WBop = EXop @pop pop = EXop
then then
@actl EXALUoutput = Regs(Ra(ppop)) + Regs(Rb(ppop)) @actl Regs(Rr(EXop)) = EXALUoutput
@act2 EXop = ppop @act2 WBop = EXop UNIVERSITY OF
end end Southampton

School of Electronics
and Computer Science

Sequential Execution: Discovering the
Invariant

N

ppop———B>

E /N
EXALUoutput = Regs(Ra(EXop))
U
EX) ;»/
v @ Proof Obligations
@ inv3 /WD
G AN

variant {WBop} n {EXop}

%
convergent event EX

any ppop

where
@grdl ppop € ArithRROp
@grd2 ppop # EXop
@grd3 WBop = EXop

then

@ INITIALISATION finv3 /I
G EX/inv3 /INV

@" EX/actl/WD

@ EX/VAR

Source Register can be Overwritten

ADD R1, R1, R2

\
\
\
\

Regs[7] <- Regs[7] + Regs[2]

@ WB/inv3 /INV
@" WB/grd1/GRD
" WB/actl /WD
" WB/actl/sIM
@" WB/ac2/5IM

L 1

vent WB refines ArithRR
where
@grdl EXop € ArithRROp
@grd2 WBop # EXop

@actl EXALUoutput = Regs(Ra(ppop)) + Regs(Rb(ppop))
@act2 EXop = ppop

end

with
@pop pop = EXop
then
@actl Regs(Rr(EXop)) =
@act2 WBop = EXop UNIVERSITY OF
Southampton

School of Electronics
and Computer Science

EXALUoutput

end

Sequential Execution: Discovering the
Invariant

EITHER
Event EX is enabled
OR
Event WB is enabled

AND
EXALUoutput = Regs(Ra(EXop)) + Regs(Rb(EXop))

~TEXOP ~IVVBOP
convergent event EX event WB refines ArithRR

any ppop where

where @grdl EXop € ArithRROp
@grdl ppop € ArithRROp @grd2 WBop # EXop
@grd2 ppop # EXop with
@grd3 WBop = EXop @pop pop = EXop

then then
@actl EXALUoutput = Regs(Ra(ppop)) + Regs(Rb(ppop)) @actl Regs(Rr(EXop)) = EXALUoutput
@act2 EXop = ppop @act2 WBop = EXop

UNIVERSITY OF

end end Southampton

School of Electronics
and Computer Science

Sequential Execution: Discovering the
Invariant

WBop = EXop v (WBop # EXop A EXALUoutput = Regs(Ra(EXop)) + Regs(Rb(EXop)))

v
ppop——B> EX S

variant {WBop} n {EXop}

v \
EXop WBop

— ——» Regs| ——

~C O ~C OCIHX>XMm

convergent event EX event WB refines ArithRR

any ppop where

where @grdl EXop € ArithRROp
@grdl ppop € ArithRROp @grd2 WBop # EXop
@grd2 ppop # EXop with
@grd3 WBop = EXop @pop pop = EXop

then then
@actl EXALUoutput = Regs(Ra(ppop)) + Regs(Rb(ppop)) @actl Regs(Rr(EXop)) = EXALUoutput
@act2 EXop = ppop @act2 WBop = EXop UNIVERSITY OF

end end Southampton

School of Electronics
and Computer Science

Sequential Execution: Discovering the

Invariant

WBop = EXop v (WBop # EXop

A EXALUoutput = Regs(Ra(EXop)) + Regs(Rb(EXop)))

ppop———B>

\

— > Xm

Invariant also ensures Deadlock Freeness

variant {WBo

\ EXop \ WBop
convergent event EX event WB refines ArithRR
any ppop where
where @grdl EXop € ArithRROp
@grdl ppop € ArithRROp @grd2 WBop # EXop
@grd2 ppop # EXop with
@grd3 WBop = EXop @pop pop = EXop
then then
@actl EXALUoutput = Regs(Ra(ppop)) + Regs(Rb(ppop)) @actl Regs(Rr(EXop)) = EXALUoutput

@act2 EXop = ppop

end

@act2 WBop = EXop UNIVERSITY OF
end Southampton

School of Electronics
and Computer Science

Sequential Execution: Simplifying the
Invariant

WBop # EXop = EXALUoutput = Regs(Ra(EXop)) + Regs(Rb(EXop))

v
ppop——B> EX S

variant {WBop} n {EXop}

v \
EXop WBop

— ——» Regs| ——

~C O ~C OCIHX>XMm

convergent event EX event WB refines ArithRR

any ppop where

where @grdl EXop € ArithRROp
@grdl ppop € ArithRROp @grd2 WBop # EXop
@grd2 ppop # EXop with
@grd3 WBop = EXop @pop pop = EXop

then then
@actl EXALUoutput = Regs(Ra(ppop)) + Regs(Rb(ppop)) @actl Regs(Rr(EXop)) = EXALUoutput
@act2 EXop = ppop @act2 WBop = EXop

UNIVERSITY OF

end end Southampton

School of Electronics
and Computer Science

Sequential Execution: A Correct Refinement
of the Abstract Model

WBop # EXop = EXALUoutput = Regs(Ra(EXop)) + Regs(Rb(EXop))

— > Xm

ppop——B> EX — v & Proof Obligations
@" inv3 WD
@" FIN

@ INITIALISATION /inv3 /INV
variant {WBop} n {EXop] G EX/inv3 /INV
@" EXjactl/wD
4 " EX/VAR

@G" WB/inv3 /INV
" WB/grd1/GRD
" WB/act1/wD

it
convergent event EX ﬂAWWauMHM
" WB/ac2/SIM

any ppop

where
@grdl ppop € ArithRROp
@grd2 ppop # EXop
@grd3 WBop = EXop

then

@actl EXALUoutput = Regs(Ra(ppop)) + Regs(Rb(ppop))
@act2 EXop = ppop
end

—» |Regs| ——

WBop

event WB refines ArithRR
where
@grdl EXop € ArithRROp
@grd2 WBop # EXop
with
@pop pop = EXop
then
@actl Regs(Rr(EXop)) = EXALUoutput
@a C t 2 WBO p = EXOp UNIVERSITY OF
end Southampton

School of Electronics
and Computer Science

Consider Parallel Execution

B E e

EXALUoutput = Regs(Ra(EXop)) + Regs(Rb(EXop)) 47

U
ppop————»> o |—» WB —— > |Regs
u
t
p
u
t
event EXWB refines ArithRR EXop WBop
any ppop
where

@rdl EXop € ArithRROp
@grd2 ppop € ArithRROp
with
@pop pop = EXop
then
@actl Regs(Rr(EXop)) = EXALUoutput
@act2 WBop = EXop
@act3 EXALUoutput = Regs(Ra(ppop)) + Regs(Rb(ppop)) UNIVERSITY OF
@act4 EXop = ppop Southampton

end School of Electronics
and Computer Science

Consider Parallel Execution

B E e

EXALUoutput = Regs(Ra(EXop)) + Regs(Rb(EXop)) X

U
ppop———— B> o|l—» WB > |[Regs| ——
u
t v
v @) Proof Obligations
@" inv3 wo
] @" INITIALISATION /inv3 /INV
@' EXWB/inv3/INV
event EXWB refines ArithRR E G EXWB/grd1/CRD WBop
any ppop - " EXWB/actl /WD
where @" EXWB/act3 /WD
: " EXWB/actl/sIM
@grdl EXop e Ar%thRROp " EXWB/act2 /SIM
@grd2 ppop € ArithRROp
with
@pop pop = EXop
then

@actl Regs(Rr(EXop)) = EXALUoutput
@act2 WBop = EXop
@act3 EXALUoutput = Regs(Ra(ppop)) + Regs(Rb(ppop)) UNIVERSITY OF

@act4 EXop = ppop Southampton

end School of Electronics
and Computer Science

Consider Parallel Execution

Successive Instructions can /nterfere
Aﬁm E a)
EXALUoutput = Regs(Ra(EXop)) ADREVERS P
U \ADD R4, R1,R5
ppop———B> o|—p \\
u
| ! i\
v @) Proof Obligations
@" inv3/WD Regs[7] <- Regs[2] + Regs|[3]
7 i‘i’ﬁ' INITIALISATION
@ EXWB/inv3/INV
event EXWB refines ArithRR E @" EXWB/grd1/GR Regs[4] <- Regs[7] + Regs[5]
any ppop - " EXWB/actl/WD
where @ EXWB/act3 /WD
@grdl EXop € AI"ithRROp i:j.ii EXWB/actl/5IM
. U EXWEB/acr2 /SIM
@grd2 ppop € ArithRROp
with
@pop pop = EXop
then

@actl Regs(Rr(EXop)) = EXALUoutput
@act2 WBop = EXop
@act3 EXALUoutput = Regs(Ra(ppop)) + Regs(Rb(ppop)) UNIVERSITY OF

@act4 EXop = ppop Southampton

end School of Electronics
and Computer Science

Parallel Execution must detect potential
RAW Hazard'....

B E e

EXALUoutput = Regs(Ra(EXop)) + Regs(Rb(EXop))

U

ppop——B> EX —P» 0o | P WB
u
t
p
u
t

event EXWB refines ArithRR
any ppop EXop
where

@grdl EXop € ArithRROp
@grd2 ppop € ArithRROp
@grd3 Rr(EXop) # Ra(ppop)
@grd4 Rr(EXop) # Rb(ppop)

with
@pop pop = EXop

then
@actl Regs(Rr(EXop)) = EXALUoutput
@act2 WBop = EXop
@act3 EXALUoutput := Regs(Ra(ppop)) + Regs(Rb(ppop))
@act4 EXop = ppop

end

—— P |Regs ——

WBop

Computer Architecture: A Quantitative Approach
Hennessy and Patterson, 1990

UNIVERSITY OF

Southampton

School of Electronics
and Computer Science

.... and deal with the RAW Hazard correctly

Forwarding
A E A

EXALUoutput = Regs(Ra(EXop)) + Regs(Rb(EXop))

EEE— WB — P |Regs]

>
event EXWBRAWa refines ArithRR
any ppop EXop WBop

where
@grdl EXop € ArithRROp
@grd2 ppop € ArithRROp
@grd3 Rr(EXop) = Ra(ppop)
@grd4 Rr(EXop) # Rb(ppop)
with
@pop pop = EXop
then
@actl Regs(Rr(EXop)) = EXALUoutput
@act2 WBop = EXop
UNIVERSITY OF

@act3 EXALUoutput = EXALUoutput + Regs(Rb(ppop)) Southampton
@act4 EXOp = ppop School of Electronics

and Computer Science

ppop——B> EX

~ C T ~C O (

end

.... and deal with the RAW Hazard correctly

Forwarding
A E A~
EXALUoutput = Regs(Ra(EXop)) + Regs(Rb(EXop))
o / 1
ppop———»> o | Regs _
u v & Proof Obligations
t @" inv3 /WD
p @ INITIALISATION finv3 /INV
u " EXWBnoRAW /grd4 /WD
t @" EXWBRoRAW/grd3 /WD
1t]
event EXWBRAWa refines ArithRR B Enem 0 s e
" EXWBnoRAW/grd 1/GRD
any ppop EXop G EXWBRoRAW /act1 /WD WBop
where " EXWBnoRAW/act3 /WD
@grdl EXop € ArithRROp @’ EXWBnoRAW/act1/SIM
@grd2 ppop € ArithRROp G" EXWBnoRAW /act2 /SIM

@grd3 Rr(EXop) = Ra(ppop)
@grd4 Rr(EXop) # Rb(ppop)
with

@' EXWBRAWa /gr
" EXWBRAWa /gr
" EXWBRAWa jim
" EXWBRAWa /gr

Total | Aute. Manual.

ie 3e 0O 0

Component Name

; PIPEC 0

@pop pop = EXop .ﬂz EXWBRAWa /ac e ;
then " EXWBRAWa/ac

@ EXWBRAWa/ac| T TERL 33
@actl Regs(Rr(EXop)) = EXALUoutput " EXWBRAWa /act2 /SIM
@act2 WBop = EXop
@act3 EXALUoutput = EXALUoutput + Regs(Rb(ppop))
@act4 EXop = ppop

end

0
3
33

0

Total | Auto. Manual.

0
0
0

Reviewed Undischarged

Reviewed Undischarged
0 0
0 0
0]

UNIVERSITY OF

Southampton

School of Electronics
and Computer Science

Summary and Future Work

« A Systematic Method for Pipelined Hardware
Component Specification is being developed
using Event-B refinement and automatic proof

- Micro-architectural Exploration and Verification can
be raised to the Specification Level

- A route to Bluespec, CAL is being explored

- Can potentially be incorporated into an existing
High-Level Synthesis Methodology

IIIIIIIIIII

nd Computer Science

