
Crossed-Project Reference for Managing Model
Variations

Hironobu Kuruma1 and Thai Son Hoang2

1 Research and Development Group, Hitachi Ltd., Japan
2 ECS, University of Southamtpon, U.K.

Background. A model in Event-B [1] (typically located within a project) is com-
posed of components combined using refines, extends or sees relations. Fig. 1
shows an example of model variations containing some common machines and
contexts, i.e., Machine1, Machine2, Context1 and Context2. Machine3 and Context3

(resp. Machine4 and Context4) are additional component specific to project A
(resp. B).

Machine1

Machine2

Machine4

Context1

Context2

Context3

sees

sees

sees

refines

refines

extends

extends

(a) Project A

Machine1

Machine2

Machine4

Context1

Context2

Context4

sees

sees

sees

refines

refines

extends

extends

(b) Project B

Fig. 1: A family of models

Motivation. To maintain these models, it is desirable to separate the common
components and to share them between the projects. In Fig. 2, project C is for
the shared components, where the original projects A and B contain only the
additional components. This structure is beneficial for composing a family of
models that has common properties by sharing components.

Concept. We experimentally introduced a crossed-project reference mechanism
into the RODIN platform [2] to manage collections of components and enable ref-
erence to components in different projects. The crossed-project reference mecha-
nism uses a manifest to identify components to be imported from other projects
(Fig. 2). The names of imported components are prefixed with their project
name. The components in importing project refer the imported components by
their names declared in the manifest. The imports relation between projects
must be acyclic.



Project C Machine1

Machine2

Context1

Context2

sees

sees

refines extends

Project A Machine3 Context3

refines extends

manifest
imports C Machine2,

C Context2

Project B Machine4 Context4

refines

extends

manifest
imports C Machine2,

C Context2

sees

sees

Fig. 2: Crossed-project Reference

Implementation. We implemented the cross project reference by renaming and
copying the statically checked files of imported components into the importing
project. In our example, two files in C, i.e., the statically checked files of Machine2

and Context2, are renamed to by prefexing, and copied into A and B. Since
the imported components are expected to be verified in their source project,
verification is required only for the additional components.

Conclusion and Limitation. The crossed-project reference mechanism reduces
the risk of unintended modification of components since it separates the compo-
nents into hierarchical collections. This property is useful for managing model
variations. However, our implementation is experimental and insufficient for
practical usage. Most RODIN plug-ins refer the unchecked file of components
and are incompatible with our implementation. For example, the components
that refer imported components cannot be easily edited by ordinary editors be-
cause they do not recognize the imported components. Although we expect the
generic instantiation [3] is an effective way to compose variations, the generic
instantiation plug-in also uses the unchecked files and does not work with the
crossed-project reference. Furthermore, since our implementation does not prop-
agate the change of original components, the imported file must be updated man-
ually in the importing project. The propagation of the change of components and
the collaboration with the generic instantiation are our future work.

References

1. J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.



2. J-R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, and L. Voisin. Rodin:
An open toolset for modelling and reasoning in Event-B. Software Tools for Tech-
nology Transfer, 12(6):447–466, November 2010.

3. Andreas Fürst, Thai Son Hoang, David Basin, Naoto Sato, and Kunihiko Miyazaki.
Formal system modelling using abstract data types in Event-B. In Yamine Aı̈t
Ameur and Klaus-Dieter Schewe, editors, ABZ, volume 8477 of Lecture Notes in
Computer Science, pages 222–237, Toulouse, France, June 2014. Springer-Verlag.
http://dx.doi.org/10.1007/978-3-662-43652-3_20.


