CONTEXT Identifier
EXTENDS Machine_Identifiers
SETS Identifiers
CONSTANTS Identifiers
AXIOMS Predicates

END

Note: theorems can be presented in the AXIOMS
part of a context.

2. Machines: contain events.

MACHINE Identifier
REFINES Machine_Identifiers
SEES Context_Identifiers

VARIABLES Identifiers
INVARIANT Predicates

VARIANT Expression
EVENTS Events
END

Note: theorems can be presented in the INVARI-
ANT section of a machine and the WHERE part
of an event.

6.2 Actions

Actions are used to change the state of a machine. There
may be multiple actions, but they take effect concur-
rently, that is, in parallel. The semantics of events are
defined in terms of substitutions. The substitution [G]P
defines a predicate obtained by replacing the values of
the variables in P according to the action G. General
substitutions are not available in the Event-B language.

Note on concurrency: any single variable can be mod-
ified in at most one action, otherwise the effect of the
actions would, in general, be inconsistent.

1. skip, the null action:
skip denotes the empty set of actions for an event.

2. Simple assignment action: z := E n
1= = “becomes equal to”: replace free occurrences
of x by E.

3. Choice from set: z:€ S

1€ = “becomes in”: arbitrarily choose a value from

A Concise Summary of the Event-B mathematical toolkit !

Each construct will be given in its presentation form, as displayed in the Rodin toolkit, followed by the | ASCII form
that is used for input to Rodin.

In the following: P, @ and R denote predicates;

2 and y denote single variables;

z denotes a single or comma-separated list of variables;

p denotes a pattern of variables, possibly including — and parentheses;
S and T denote set expressions;

U denotes a set of sets;

m and n denote integer expressions;

f and g denote functions;

r denotes a relation;

E and F denote expressions;

E, F is a recursive pattern, ie it matches e;, ea and also ey, ez, e3 ... ; similarly for x,y;

Freeness: The meta-predicate —free(z, E) means that none of the variables in z occur free in E. This meta-
predicate is defined recursively on the structure of E, but that will not be done here explicitly. The base cases
are: —free(z,Vz - P = Q), ~free(z,3z - P A Q), —free(z,{z- P | F}), ~free(z, \z - P|E), and free(z, z).

In the following the statement that P must constrain z means that the type of z must be at least inferrable from
P.

In the following, parentheses are used to show syntactic structure; they may of course be omitted when there is

the set S.
6.1 Events 4. Choice by predicate: z :| P
Event_name)| = “becomes such that”: arbitrarily choose val-
REFINES Event._identifiers ues for the variable in z that satisfy the predicate

P. Within P, z refers to the value of the variable

ANY Identifiers .
WHERE Predicates z before the action and z’ refers to the value of
WITH Witnesses the variable after the action.

THEN Actions 5. Functional override: f(z):=E
END Substitute the value £ for the function/relation f
There is one distinguished event named INITIALISA- at the point x.

TION used to initialise the variables of a machine, thus This is a shorthand:
establishing the invariant. flx):=F = f:=f<{z— E}.

Acknowledgement: Jean-Raymond Abrial, Laurent Voisin and Ian Hayes have all given valuable feedback and
corrections at various stages of the evolution of this summary.

no confusion.

Note:

Event-B has a formal syntax and this summary does not attempt to describe that syntax. What it

attempts to do is to explain Event-B constructs. Some words like ezpression collide with the formal syntax.
Where a syntactical entity is intended the word will appear in italics, e.g. expression, predicate.

1 Predicates 2 Sets
1. False L 1. Singleton set: {E} {E}
2. True T t
rue 2. Set enumeration: {E, F'} {E, F}

[<2

. Conjunction: P A Q

. Disjunction: PV Q

. Implication: P = Q

. Equivalence: P < @

Non-associative: this means that P=-@Q = R must
be parenthesised or an error will be diagnosed.

=X
P+ Q=P=QNQ=P

Non-associative: this means that P< Q< R must
be parenthesised or an error will be diagnosed.

Left associative.

Left associative.

. Set comprehension: { F'| P }

See note on the pattern E, F' at top of summary.

. Empty set: @

. Set comprehension: { z-P |F}{{z . P | F}

General form: the set of all values of F for all
values of z that satisfy the predicate P. P must
constrain the variables in z.

Special form: the set of all values of F' that sat-
isfy the predicate P. In this case the set of bound
variables z are all the free variables in F.

7. Negation: —P {F|P}={zP|F}, where z is all the variables
in F.
8. Universal quantification:
VzP=Q 6. Set comprehension: { z | P } m

10.

11.

Strictly, Vz- P, but usually an implication.

For all values of z, satisfying P, Q is satisfied.
The types of z must be inferrable from the predi-
cate P.

. Existential quantification:

3 P1Q

Strictly, 3z- P, but usually a conjunction.

There exist values of z, satisfying P, that satisfy
0.

The type of z must be inferrable from the predicate
P.

Equality: £ =F

Inequality: E # F E /

IVersion January 23, 2014©1996-2014 Ken Robinson

10.

. Union: SUT
. Intersection: SNT

. Difference: S\ T

A special case of item 5: the set of all values of z
that satisfy the predicate P.
{z|Py={zP|a}

S\T ={z|zeSAnx¢T}

Ordered pair: E +— F
Ew— F# (E,F)
Left associative.
In all places where an ordered pair is required,

11.

12.

13.

14.

15.

16.

17.

18.

2.1

. Set non-membership: E ¢ S
. Subset: SCT

. Not a subset: ST

. Proper subset: S C T

. Not a proper subset: s ¢ ¢

. Finite set: finite(S)

E +— F must be used. E,F will not be ac- 3
cepted as an ordered pair, it is always a list.
{z,y-P | x — y} illustrates the different usage.

Cartesian product: S x T

Left-associative.

2.

Powerset: P(S)
P(S) = {s|sC 5}

4

Non-empty subsets: P;(S)
P1(5) = P(9)\{2}

Cardinality: card(S)
Defined only for finite(S).

Generalized union: union(U)
The union of all the elements of U. 2
vYU-U € P(P(S)) =

union(U) ={z |z € SAIs:se€UAzx < s} 3.

where —free(z, s, U)

Generalized intersection: inter(U)
The intersection of all the elements of U.

U # @, 5
YU-U € P(P(S)) =

inter(U) ={z |z € SAVs:se U=z € s}

where —free(x, s, U)

6
Quantified union:
P must constrain the variables in z.
Vz-P=SCT= 8
U(z-P|E)={z|zeTA3z-PArzeS}
where —free(z,2,T), —free(z,P), —free(z,S), 9.
—free(z, z)
Quantified intersection: 10.
S
P must constrain the variables in z, 11.
(=P} #,

Vz-(P=SCT))=
Nz-P|S={z]zeTANVzP=>zcb)}

where —free(x,z), —free(x,T), —free(z,P), 4.1
—free(z, S).

1
Set predicates 2
3
. Set membership: F € S
4

s< 1 5
/
: T

finite(S) < S is finite.

2 and y partition the set S, ie S = zUyAzNy = &
Specialised use for

partition(S, {A},{B},{C}).
S={A,B,C}YNA#BANB#CANC#A

enumerated sets: 3

i @] "

. The set of natural numbers: N NAT
:
. Maximum: max(S)

. Sum: m+n

. Product: m xn

. Less: m <n
. Greater or equal: m >n

. Less or equal: m <mn

)
2.
. Partition: partition(S,z,y) |partition(S,x,y)

. Range: ran(r)

BOOL and bool

BOOL is the enumerated set: {FALSE, TRUE}

and bool is defined on a predicate P as follows:

SxT={z—ylzeSAyeT} 1.

P is provable: bool(P) = TRUE
—P is provable: bool(P) = FALSE

Numbers

The following is based on the set of integers, the set of

natural numbers (non-negative integers), and the set of
card(S) s . .

positive (non-zero) natural numbers.

The set of integer numbers: Z INT

The set of positive natural numbers: Ny
N; = N\{0}

Minimum: min(S) min(S)
S C Z and finite(S) or S must have a lower bound.

S C Z and finite(S) or S must have an upper
bound.

Difference: m —n
n<m

Quotient: m/n
n#0
Remainder: m mod n

n#0

Interval: m..n
m.n={ilm<iAi<n}

Number predicates

. Greater: m >n m>n

Relations

A relation is a set of ordered pairs; a many to many
mapping.
pRinE

1.

Relations: S« T

ST =P xT)

Associativity: relations are right associative:

reXeYoeZ=reXe Yo Z).
Domain: dom(r)
VrreSeT=

dom(r) ={z-(Jy-z —yer)}

VrreSeT=
ran(r) = {y-(Jz-z —»yer)}

4. Total relation:S «» T
if r € S« T then dom(r) = S

ot

. Surjective relation:S <» T'
if r € S» T thenran(r) =T

6. Total surjective relation:S «» T

if r € S «» T then dom(r) = S and ran(r) =T

7. Forward composition: p ;¢

Vpgpe S TNANqeT U=
pig={z—y|Bzaz—zeprz—ycq)}

8. Backward composition: po ¢
poqg=4q;p
9. Identity: id

S<qid={z—z|xzeS}
id is generic and the set S is inferred from the
context.

10. Domain restriction: S <17 S<|r
Sar={z—yl|lz—yernzeS}

11. Domain subtraction: S <r
Sar={z—ylz—yernz¢S}

12. Range restriction: r > T r [>T
r>T={z—ylz—yerAyeT}

13. Range subtraction: r & T
reT={z—y|lyerny¢T}

14. Inverse: r—!

rl={y—z|z—yecr}

15. Relational image: r[S]
rlS]={y|3zzeSAz—yecr}

16. Overriding: 71 < 7o rl <+ r2

r1 <19 =ro U (dom(rg) € 71).

17. Direct product: p ® ¢
pRq={z—(y—z2)|z—yeprz—zeq}

a} /]
el
— A
v o] N A
A — Vv —_
wn Lo}
Q = - N

18. Parallel product: p || ¢

I

pllg={z,yymnarz—mepAy—negq

(z

19. Projection: prj; prjl

prj; is generic.
(SxT)<prjy={(z—y)—a|z—yeSxT}

20. Projection: prj, prj2

prj, is generic.
(SxT)y<prjy={(z—y)—»y|lz—yeSxT}

5.1 Iteration and Closure

Tteration and closure are important functions on rela-
tions that are not currently part of the kernel Event-B
language. They can be defined in a Context, but not
polymorphically.

Note: iteration and irreflexive closure will be imple-
mented in a proposed extension of the mathematical
language. The operators will be non-associative.

1. Partial functions: S+ T

. Partial surjections: S -+ T

. Total surjections: S — T

. Bijections: S —»T

. Iteration: " r’n

reSeS=r0=5gidAarmt =,

Note: to avoid inconsistency S should be the fi-
nite base set for r, ie the smallest set for which all
reSeS.

Could be defined as a function iterate(r — n).

. Reflexive Closure: r*

r*=Un-(neN|r").
Could be defined as a function rclosure(r).
Note: 70 C r*.

3. Trreflexive Closure: r+

r*=Un-(n €Ny |7").

Could be defined as a function iclosure(r).

Note: 70 € r* by default, but may be present
depending on 7.

5.2 Functions

A function is a relation with the restriction that each
element of the domain is related to a unique element in
the range; a many to one mapping.

I

S+T={rreS«<TArt;rCT<id}.

. Total functions: S — T S -——>T

S—T={f-feS+TANdom(f) =5}

. Partial injections: S~ T' S >+> T

SwT={ffeS+»TANfleT+S}
One-to-one relations.

. Total injections: S »—T S >>T

S—T=8+-»TnNnS—>T.
S+»T={ffeS+TAran(f)=T}
Onto relations.

S -=>>T
S>T=S+»TNS—->T.

%) "l
v +
Y Y
=] =]

S—»T=5S—-TnNS—>T.
One-to-one and onto relations.

. Lambda abstraction:

(Ap-P | E) (%p.PIE)
P must constrain the variables in p.

(Ap-P | E) ={2-P | p— E}, where z is a list of
variables that appear in the pattern p.

. Function application: f(E) f(E

I

E—ye f=FEecdom(f)AfeX+Y, where
type(f) =P(X xY).

Note: in Event-B, relations and functions only
ever have one argument, but that argument may

be a pair or tuple, hence f(E + F)
f(E, F) is never valid.

Models

. Contexts: contain sets and constants used by

other contexts or machines.

