CONTEXT	Identifier
EXTENDS	Machine_Identifiers
SETS	Identifiers
CONSTANTS	Identifiers
AXIOMS	Predicates
END	

Note: *theorems* can be presented in the AXIOMS part of a context.

2. Machines: contain events.

MACHINE	Identifier
REFINES	Machine_Identifiers
SEES	Context_Identifiers
VARIABLES	Identifiers
INVARIANT	Predicates
VARIANT	Expression
EVENTS	Events
END	

Note: *theorems* can be presented in the INVARI-ANT section of a machine and the WHERE part of an event.

6.1 Events

Event_name	
REFINES	Event_identifiers
ANY	Identifiers
WHERE	Predicates
WITH	Witnesses
THEN	Actions
END	

There is one distinguished event named INITIALISA-TION used to initialise the variables of a machine, thus establishing the invariant.

Acknowledgement: Jean-Raymond Abrial, Laurent Voisin and Ian Hayes have all given valuable feedback and corrections at various stages of the evolution of this summary.

6.2 Actions

Actions are used to change the state of a machine. There may be multiple actions, but they take effect concurrently, that is, in parallel. The semantics of events are defined in terms of *substitutions*. The substitution [G]P defines a predicate obtained by replacing the values of the variables in P according to the action G. General substitutions are not available in the Event-B language.

Note on concurrency: any single variable can be modified in at most one action, otherwise the effect of the actions would, in general, be inconsistent.

 skip, the null action: skip denotes the empty set of actions for an event.

- 2. Simple assignment action: z := E $\boxed{\mathbf{x} := \mathbf{E}}$:= = "becomes equal to": replace free occurrences of x by E.
- 3. Choice from set: $x :\in S$ x :: S: $\in =$ "becomes in": arbitrarily choose a value from the set S.
- 4. Choice by predicate: $z :| P \qquad | \mathbf{z} :| \mathbf{P} |$:| = "becomes such that": arbitrarily choose values for the variable in z that satisfy the predicate P. Within P, x refers to the value of the variable x before the action and x' refers to the value of the variable after the action.
- 5. Functional override: f(x) := E Substitute the value E for the function/relation f at the point x. This is a shorthand: $f(x) := E = f := f \Leftrightarrow \{x \mapsto E\}.$

A Concise Summary of the Event-B mathematical toolkit ¹

Each construct will be given in its presentation form, as displayed in the Rodin toolkit, followed by the ASCII form that is used for input to Rodin.

In the following: P, Q and R denote predicates; x and y denote single variables; z denotes a single or comma-separated list of variables; p denotes a pattern of variables, possibly including \mapsto and parentheses; S and T denote set expressions; U denotes a set of sets; m and n denote integer expressions; f and g denote functions; r denotes a relation; E and F denote expressions; E, F is a recursive pattern, ie it matches e_1, e_2 and also $e_1, e_2, e_3 \dots$; similarly for x, y;

Freeness: The meta-predicate $\neg free(z, E)$ means that none of the variables in z occur free in E. This meta-predicate is defined recursively on the structure of E, but that will not be done here explicitly. The base cases are: $\neg free(z, \forall z \cdot P \Rightarrow Q), \neg free(z, \exists z \cdot P \land Q), \neg free(z, \{z \cdot P \mid F\}), \neg free(z, \lambda z \cdot P \mid E), and free(z, z).$

In the following the statement that P must constrain z means that the type of z must be at least inferrable from P.

In the following, parentheses are used to show syntactic structure; they may of course be omitted when there is no confusion.

Note: Event-B has a formal syntax and this summary does not attempt to describe that syntax. What it attempts to do is to *explain* Event-B *constructs*. Some words like *expression* collide with the formal syntax. Where a syntactical entity is intended the word will appear in *italics*, *e.g. expression*, *predicate*.

1 Predicates $\mathbf{2}$ Sets 1. False \perp false {E} 1. Singleton set: $\{E\}$ 2. True \top true 2. Set enumeration: $\{E, F\}$ {E, F} P & Q See note on the pattern E, F at top of summary. 3. Conjunction: $P \wedge Q$ Left associative. {} 3. Empty set: Ø 4. Disjunction: $P \lor Q$ P or Q Left associative. 4. Set comprehension: $\{z \cdot P \mid F\}$ $\{z \cdot P \mid F\}$ P => Q 5. Implication: $P \Rightarrow Q$ General form: the set of all values of F for all Non-associative: this means that $P \Rightarrow Q \Rightarrow \overline{R}$ must values of z that satisfy the predicate P. P must be parenthesised or an error will be diagnosed. constrain the variables in z. 6. Equivalence: $P \Leftrightarrow Q$ P <=> Q 5. Set comprehension: $\{F \mid P\}$ $\{F \mid P\}$ $P \iff Q = P \Rightarrow Q \land Q \Rightarrow P$ Special form: the set of all values of F that sat-Non-associative: this means that $P \Leftrightarrow Q \Leftrightarrow R$ must isfy the *predicate* P. In this case the set of bound be parenthesised or an error will be diagnosed. variables z are all the free variables in F. $\{F \mid P\} = \{z \cdot P \mid F\}$, where z is all the variables 7. Negation: $\neg P$ not P in F. 8. Universal quantification: !z.P => Q $\forall z \cdot P \Rightarrow Q$ 6. Set comprehension: $\{x \mid P\}$ { x | P } Strictly, $\forall z \cdot P$, but usually an implication. A special case of item 5: the set of all values of xFor all values of z, satisfying P, Q is satisfied. that satisfy the *predicate* P. The types of z must be inferrable from the *predi*- $\{x \mid P\} = \{x \cdot P \mid x\}$ cate P. 7. Union: $S \cup T$ S \/ T 9. Existential quantification: $\exists z \cdot P \land Q$ #z.P & Q S /\ T 8. Intersection: $S \cap T$ Strictly, $\exists z \cdot P$, but usually a conjunction. There exist values of z, satisfying P, that satisfy 9. Difference: $S \setminus T$ S \ T $S \setminus T = \{ x \mid x \in S \land x \notin T \}$ The type of z must be inferrable from the *predicate* Ρ. 10. Ordered pair: $E \mapsto F$ E |-> F 10. Equality: E = FE = F $E \mapsto F \neq (E, F)$ Left associative. 11. Inequality: $E \neq F$ E /= F

 $[\underline{E} / = F]$ In all places where an ordered pair is required,

¹Version January 23, 2014©1996-2014 Ken Robinson

 $E \mapsto F$ must be used. E, F will not be ac- **3** BOOL and bool cepted as an ordered pair, it is always a list. $\{x, y \cdot P \mid x \mapsto y\}$ illustrates the different usage. 11. Cartesian product: $S \times T$ S ** T $S \times T = \{ x \mapsto y \mid x \in S \land y \in T \}$ Left-associative. 12. Powerset: $\mathbb{P}(S)$ POW(S) $\mathbb{P}(S) = \{s \mid s \subseteq S\}$ 4 Numbers 13. Non-empty subsets: $\mathbb{P}_1(S)$ POW1(S) $\mathbb{P}_1(S) = \mathbb{P}(S) \setminus \{\emptyset\}$ 14. Cardinality: card(S)card(S) Defined only for finite(S). 15. Generalized union: union(U)union(U) The union of all the elements of U. $\forall U \cdot U \in \mathbb{P}(\mathbb{P}(S)) \Rightarrow$ $union(U) = \{x \mid x \in S \land \exists s \cdot s \in U \land x \in s\}$ $\mathbb{N}_1 = \mathbb{N} \setminus \{0\}$ where $\neg free(x, s, U)$ 4. Minimum: $\min(S)$ 16. Generalized intersection: inter(U)inter(U) The intersection of all the elements of \overline{U} . $U \neq \emptyset$. $\forall U \cdot U \in \mathbb{P}(\mathbb{P}(S)) \Rightarrow$ $inter(U) = \{x \mid x \in S \land \forall s \cdot s \in U \Rightarrow x \in s\}$ bound where $\neg free(x, s, U)$ 6. Sum: m + n17. Quantified union: 7. Difference: m - n $\cup z \cdot P \mid S$ UNION z.P | S $n \leq m$ P must constrain the variables in z. $\forall z \cdot P \Rightarrow S \subseteq T \Rightarrow$ 8. Product: $m \times n$ $\bigcup (z \cdot P \mid E) = \{x \mid x \in T \land \exists z \cdot P \land x \in S\}$ where $\neg free(x, z, T)$, $\neg free(x, P)$, $\neg free(x, S)$, 9. Quotient: m/n $\neg free(x, z)$ $n \neq 0$ $n \neq 0$ INTER z.P | S 11. Interval: $m \dots n$ 1. Greater: m > n2. Less: m < nE : S E /: S S <: T 5 Relations S /<: T mapping. S <<: T 1. Relations: $S \leftrightarrow T$ S /<<: T finite(S) 2. Domain: $\operatorname{dom}(r)$ $\forall r \cdot r \in S \leftrightarrow T \Rightarrow$ sets: 3. Range: ran(r)

BOOL is the enumerated set: {FALSE, TRUE} and bool is defined on a predicate P as follows: 1. P is provable: bool(P) = TRUE2. $\neg P$ is provable: bool(P) = FALSE The following is based on the set of integers, the set of natural numbers (non-negative integers), and the set of positive (non-zero) natural numbers. 1. The set of integer numbers: \mathbb{Z} INT NAT 2. The set of natural numbers: \mathbb{N} 3. The set of positive natural numbers: \mathbb{N}_1 NAT1 min(S) $S \subset \mathbb{Z}$ and finite(S) or S must have a lower bound. 5. Maximum: $\max(S)$ max(S) $S \subset \mathbb{Z}$ and finite(S) or S must have an upper m + n m - n m * nm / n 10. Remainder: $m \mod n$ m mod n m .. n $m \dots n = \{ i \mid m \le i \land i \le n \}$ 4.1 Number predicates m > nm < n m >= n 3. Greater or equal: $m \ge n$ 4. Less or equal: $m \leq n$ m <= n A relation is a set of ordered pairs; a many to many S <-> T $S \leftrightarrow T = \mathbb{P}(S \times T)$ Associativity: relations are right associative: $r \in X \leftrightarrow Y \leftrightarrow Z = r \in X \leftrightarrow (Y \leftrightarrow Z).$ dom(r) $\operatorname{dom}(r) = \{x \cdot (\exists y \cdot x \mapsto y \in r)\}$ ran(r) $\forall r \cdot r \in S \leftrightarrow T \Rightarrow$

- 4. Total relation: $S \Leftrightarrow T$ if $r \in S \iff T$ then $\operatorname{dom}(r) = S$
- 5. Surjective relation: $S \leftrightarrow T$ S <->> T if $r \in S \Leftrightarrow T$ then ran(r) = T
- S <<->> T 6. Total surjective relation: $S \iff T$ if $r \in S \iff T$ then dom(r) = S and ran(r) = T

S <<-> T

p circ q

r |>> T

r~

r[S]

r1 <+ r2

- 7. Forward composition: p; qp ; q $\forall p, q \cdot p \in S \leftrightarrow T \land q \in T \leftrightarrow U \Rightarrow$ $p: q = \{x \mapsto y \mid (\exists z \cdot x \mapsto z \in p \land z \mapsto y \in q)\}$
- 8. Backward composition: $p \circ q$ $p \circ q = q; p$
- id 9. Identity: id $S \triangleleft \mathrm{id} = \{ x \mapsto x \mid x \in S \}.$ id is generic and the set S is inferred from the context.
- 10. Domain restriction: $S \triangleleft r$ $S \triangleleft r = \{ x \mapsto y \mid x \mapsto y \in r \land x \in S \}.$
- 11. Domain subtraction: $S \triangleleft r$ S <<| r $S \triangleleft r = \{ x \mapsto y \mid x \mapsto y \in r \land x \notin S \}.$
- 12. Range restriction: $r \triangleright T$ r |> T $r \triangleright T = \{ x \mapsto y \mid x \mapsto y \in r \land y \in T \}.$
- 13. Range subtraction: $r \triangleright T$ $r \triangleright T = \{ x \mapsto y \mid y \in r \land y \notin T \}.$
- 14. Inverse: r^{-1} $r^{-1} = \{ y \mapsto x \mid x \mapsto y \in r \}.$
- 15. Relational image: r[S] $r[S] = \{ y \mid \exists x \cdot x \in S \land x \mapsto y \in r \}.$
- 16. Overriding: $r_1 \Leftrightarrow r_2$ $r_1 \nleftrightarrow r_2 = r_2 \cup (\operatorname{dom}(r_2) \triangleleft r_1).$
- 17. Direct product: $p \otimes q$ p >< q $p \otimes q = \{ x \mapsto (y \mapsto z) \mid x \mapsto y \in p \land x \mapsto \overline{z \in q} \}$
- 18. Parallel product: $p \parallel q$ p || q $p \parallel q = \{x, y, m, n \cdot x \mapsto m \in p \land y \mapsto n \in q \mid (x \mapsto y) \mid (x$ $y) \mapsto (m \mapsto n)$
- 19. Projection: prj₁ prj1 prj_1 is generic. $(S \times T) \triangleleft \operatorname{prj}_1 = \{ (x \mapsto y) \mapsto x \mid x \mapsto y \in S \times T \}.$
- 20. Projection: prj₂ prj2 prj_2 is generic. $(S \times T) \triangleleft \operatorname{prj}_2 = \{(x \mapsto y) \mapsto y \mid x \mapsto y \in S \times T\}.$

5.1 Iteration and Closure

Iteration and closure are important functions on relations that are not currently part of the kernel Event-B language. They can be defined in a Context, but not polymorphically.

Note: iteration and irreflexive closure will be implemented in a proposed extension of the mathematical language. The operators will be non-associative.

- 1. Iteration: r^n r^n $r \in S \leftrightarrow S \Rightarrow r^0 = S \lhd \mathrm{id} \land r^{n+1} = r ; r^n$ Note: to avoid inconsistency S should be the finite *base* set for r, is the smallest set for which all $r \in S \leftrightarrow S$. Could be defined as a function $iterate(r \mapsto n)$.
- 2. Reflexive Closure: r^* r^* $r^* = \bigcup n \cdot (n \in \mathbb{N} \mid r^n).$ Could be defined as a function rclosure(r). Note: $r^0 \subseteq r^*$.
- 3. Irreflexive Closure: r^+ r^+ $r^+ = \bigcup n \cdot (n \in \mathbb{N}_1 \mid r^n).$ Could be defined as a function iclosure(r). Note: $r^0 \not\subseteq r^+$ by default, but may be present depending on r.

5.2 Functions

S < |r| A function is a relation with the restriction that each element of the domain is related to a unique element in the range; a many to one mapping.

- 1. Partial functions: $S \rightarrow T$ S +-> T $S \to T = \{ r \cdot r \in S \leftrightarrow T \land r^{-1} ; r \subseteq T \lhd \operatorname{id} \}.$
- 2. Total functions: $S \to T$ S --> T $S \to T = \{ f \cdot f \in S \to T \land \operatorname{dom}(f) = S \}$
- 3. Partial injections: $S \rightarrow T$ S >+> T $S \rightarrowtail T = \{ f \cdot f \in S \Rightarrow T \land f^{-1} \in T \Rightarrow S \}$ One-to-one relations.
- 4. Total injections: $S \rightarrow T$ S >-> T $S \rightarrowtail T = S \leadsto T \cap S \to T.$
- 5. Partial surjections: $S \twoheadrightarrow T$ S +->> T $S \twoheadrightarrow T = \{f \cdot f \in S \implies T \land \operatorname{ran}(f) = T\}$ Onto relations.

S -->> T

S >->> T

- 6. Total surjections: $S \rightarrow T$ $S \twoheadrightarrow T = S \twoheadrightarrow T \cap S \to T.$
- 7. Bijections: $S \rightarrow T$ $S \rightarrowtail T = S \rightarrowtail T \cap S \twoheadrightarrow T.$ One-to-one and onto relations.
- 8. Lambda abstraction: $(\lambda p \cdot P \mid E)$ (%p.P|E) P must *constrain* the variables in p. $(\lambda p \cdot P \mid E) = \{z \cdot P \mid p \mapsto E\}, \text{ where } z \text{ is a list of }$ variables that appear in the pattern p.
- f(E) 9. Function application: f(E) $E \mapsto y \in f \Rightarrow E \in \text{dom}(f) \land f \in X \Rightarrow Y$, where $type(f) = \mathbb{P}(X \times Y).$ Note: in Event-B, relations and functions only ever have one argument, but that argument may be a pair or tuple, hence $f(E \mapsto F)$ **f(E |-> F)** f(E, F) is never valid.

Models

6

1. Contexts: contain sets and constants used by other contexts or machines.

 $\operatorname{ran}(r) = \{ y \cdot (\exists x \cdot x \mapsto y \in r) \}$

- - $(\forall z \cdot (P \Rightarrow S \subseteq T)) \Rightarrow$ $\cap z \cdot P \mid S = \{x \mid x \in T \land (\forall z \cdot P \Rightarrow x \in S)\}$

2.1 Set predicates

- 1. Set membership: $E \in S$
- 2. Set non-membership: $E \notin S$
- 3. Subset: $S \subseteq T$
- 4. Not a subset: $S \not\subseteq T$
- 5. Proper subset: $S \subset T$
- 6. Not a proper subset: $s \not\subset t$
- 7. Finite set: finite(S) $finite(S) \Leftrightarrow S$ is finite.
- 8. Partition: partition(S, x, y) partition(S, x, y) x and y partition the set S, ie $S = x \cup y \land x \cap y = \emptyset$
 - Specialised use for enumerated $partition(S, \{A\}, \{B\}, \{C\}).$ $S = \{A, B, C\} \land A \neq B \land B \neq C \land C \neq A$

- 18. Quantified intersection: $\cap z \cdot P \mid S$ P must constrain the variables in z, $\{z \mid P\} \neq \emptyset,$
 - where $\neg free(x, z)$, $\neg free(x, T)$, $\neg free(x, P)$, $\neg free(x, S).$