Extending Camille

Ingo Weigelt

September 21, 2010

Abstract

The Camille Text Editor is a successful extension for the Rodin Plat-
form. It allows users to edit Event-B models in a plain text editor, as
opposed to the default form-based editor.

Currently, problems arise when a plug-in extends the Event-B lan-
guage. The form-based editor allows plug-ins to extend it, but there is
no such support in Camille yet. In this document, we propose a generic
mechanism that would allow plug-ins to extend the syntax of Camille.

The key idea is to use a block parser to process the textual represen-
tation of the model. Blocks containing information that belongs to the
Rodin core is processed by the Camille parser. Blocks that belong to a
certain plug-in are delegated to the plug-in that owns it as plain text.

We believe that this approach keeps the textual representation of the
model clean and readable, while giving enough control to the plug-in au-
thors to extend the syntax as they see fit. Amongst others, we propose:
single and multi-line blocks; name space management; free choice of parser
technology; and robustness, concerning syntax violations and detection of
missing plug-ins.

1 Introduction

While the Camille Text Editor is popular for editing Event-B models, users
currently cannot use it when they use certain plug-ins, as the editor does not
support the extensions of those plug-ins. In this document, we offer a solution
to this problem.

In Section 2, we will describe the new architecture in detail. In Section 3, we
demonstrate our ideas on a number of existing Rodin plug-ins.

2 The Block-Parser

Most plug-ins only need the option to extend the base Event-B grammar, i.e.
they need to add additional rules at certain points. Therefore it is sufficient
to allow the insertion of plug-in-specific code at well defined points within an
Event-B model.

Our proposal is to implement another parser that filters out these additional
blocks and dispatches them for processing. With this block-parser we can divide

a textual specification into plain Event-B code and a set of plug-in specific
code-blocks. The former can then be parsed by the existing Event-B parser
without any modifications to the grammar. The latter is simply passed to the
corresponding plug-in. Consequently the plug-in developers have to implement
their own parser for their syntax extension(s)!. Since this parser is completely
independent, developers are free to use the parser generator of their choice.

To implement this block-parser we need to overcome two major hurdles: First
we need a way to reliably detect the additional blocks and second we need to
determine which plug-in is responsible for each of them.

The easiest way to identify the blocks is to guard them by a unique character-
sequence that can not appear elsewhere in an Event-B model. For instance we
can open a block with $$ and close it with $$END.

To identify the corresponding plug-in for each block we can use the first word
after the opening $$ as a registered keyword. This keyword is bound to a specific
syntax-extension coming with a plug-in. Thereby it is possible for a plug-in to
contribute more than one extension.

As an example, lets consider the records extension. This plug-in adds a new
section record declarations to the Rodin editor and the pretty printer (Figure 1).

<~ RECORD DECLARATIONS RECORD DECLARATIONS

® T L recl

P closed
v+ @ |rec1 @ FIELDS

= SUPERTYPES e type E
e f type F

< FIELDS END
T I

o e |g type [E
o @ |? type [F
® i
END
(a) editor (b) pretty-printer

Figure 1: record declarations section

The new section as implemented in the Rodin editor already gives us a possible
syntax extension. To get a global syntax which is close to the one used by the
pretty printer the records plug-in could register the keyword record and bring
its own parser for the inner syntax.

11t should be possible to provide a generic default implementation

The record declaration depicted in Figure 1 can then for instance be typed as:

$$RECORD DECLARATIONS
recl closed

FIELDS

e : E

f:F
SEND

2.1 Keyword conflicts

Since the keywords are chosen by the plug-in developers independently, we have
to find a way to deal with conflicting keyword registrations. Our proposal is to
use import statements which define the concrete keyword used in a file for each
imported syntax-extension. For example, let org.Event-B.records.syntax be
the unique id of the syntax-extension contributed by the records plug-in used in
the example above. Then at the beginning of the context definition we have to
add the statement

uses org.eventb.records.syntax as RECORD

in order to bind the keyword RECORD to the records-extension. Additionally we
could make this import statements mandatory. This has the advantage that it
is always well documented which plug-ins are used and which syntax addition
belongs to which plug-in.

2.1.1 Versioning

We will introduce a versioning mechanism. The details have not yet been worked
out in detail. We will probably make the target version of the plug-in part of
the uses statement. We will probably model the version number and ranges
after the Eclipse versioning scheme.

For instance, the “uses” statement may look as follows:
uses org.eventb.records.syntax 1.2 as RECORD

In this example, the model would require the records plug-in version 1.2 or
better, but not including 2.0 or higher.

Plug-in developers would be required to increase the second number when they
make a backward compatible change to the syntax. When the change is not
compatible, they must increase the first number and reset the second number
to zero.

These version numbers must not be confused with the version of the plug-in.

2.2 Single-line extensions

Some plug-ins only extend the Event-B syntax by relatively short expressions.
For instance the modularisation plug-in adds new attributes (group and final)

to events. Here only one or two words have to be added to an event declaration.
To reduce the syntactical clutter in such cases we plan to offer single-line blocks.
Those are opened by a single $ and are closed by the end of the line (See below
for an example).

2.3 Joinpoints

Regarding their position within a model, we can distinguish between two kinds
of syntax extensions. On one hand we have extensions adding new sections,
e.g. top level elements, to a machine or a context. An example is the record
declarations section described above. For such extensions, the exact location of
the addition does not matter. However, to gain consistency when the source
code has to be generated (by pretty-printing) this location should be limited
to exactly one point. On the other hand some plug-ins, like the modularisation
plug-in, need to extend the syntax for certain model elements such as events or
invariants. This has two major implications for the parser design: First, a block
can be inserted within or just before nearly every model element. Second, not
only the block content but also its semantic position, i.e. the Event-B element
it is ‘attached’ to, have to be passed to the responsible plug-in.

2.4 Pretty-printing
Since it is sometimes necessary to automatically (re)generate the source code

from a given model, each plug-in has to implement a pretty-printer for its syntax
extension(s).

2.5 Comments
We will require all extensions to comply with the comment conventions used by
Camille. Camille accepts two kinds of comments: single line comments start

with a double slash (“//”) and continue until the end of the line. Multi line
comments start with slash star (“/*”) and end with star slash (“*/”).

3 Case Studies: Existing Plug-ins

3.1 Records Extension

The records extension plug-in provides two new top level sections: Record Dec-
larations and Record Extensions. See [2] and [3].

Syntax used in Documentation

The following syntax is used in the documentation in [3]:

Example for a record structure R with fields e and f:

RECORD R : ec€FE
fer

Extending Structured Types:

EXTEND RECORD R WITH g¢ge€G
heH
Syntax used in Rodin
= RECORD DECLARATIONS RECORD DECLARATIONS
& ¢ & recl
o+ @ [m - closed
FIELDS
< SUPERTYPES e type E
#ue f type F
< FIELDS END
® ¢ 0
o Q@ [g type [E
o Q@ [? type [F
® ¢ 0
END
(a) editor (b) pretty-printer

Figure 2: record declarations section

< RECORD EXTENSIONS RECORD EXTENSIONS
® ¢ 0 recl
- 4 @ Bdends recl | ~ FIELDS
g type G

— FIELDS END
@ ¢
o @ [E type [G
@ ¢

END

(a) editor (b) pretty-printer

Figure 3: record extensions section

Example syntax for Camille

The syntax extension for records is imported with a singe keyword RECORD:
(We could allow a white-space between $$ and the keyword?)

Example 1:
uses org.eventb.records as RECORD

$$ RECORD DECLARATIONS
rec?2
FIELDS
e : E
f:F
$$ END

$$RECORD EXTENSION
rec?2
FIELDS
g:G
$$END

Example 2:
uses org.eventb.records as RECORD

$$ RECORD DECLARATIONS
rec?2
FIELDS
e : E
f:F

RECORD EXTENSION
rec?2
FIELDS
g:G
$SEND

Alternatively the plug-in could also register two different keywords RECORD_DECLARATIONS
and RECORD_EXTENSIONS

3.2 Modularisation

The Modularisation Plug-in [4] brings the following additions:

e INTERFACE - A new type of Event-B component. This is an inde-
pendent type, hence no addition to the base grammar is needed. Can be
implemented as an independent file type and parser. Nevertheless reusing
existing parser rules is desirable.

e new machine constructs: IMPLEMENTS and USES

e new event attributes: group and final

e the ability to write operation calls in event actions. (Handled by the
mathematical parser)

3.2.1 Syntax used in documentation

The following syntax is used in the documentation in [4]:

Implementing a Module

MACHINE m
IMPLEMENTS interface

Importing a Module

USES prefizl : modulel
prefix2 : module2

Event attributes
Example taken from [5].

EVENTS
button = FINAL GROUP Button
WHEN
current = empty

3.2.2 Syntax used in Rodin

<~ IMPLEMENTS
® 7

@ © |interface_1 |Z|

® 7

I SEES

< USES
® 7 3

[T -] [modl : [inten‘ace_? |Z| H[_

T - [modZ : [inter‘face_3 |T| nl
® 4 4
[VARIABLES

Figure 4: implements and uses sections

— % @ |pay - |notextended | - ordinary | ~ | i graup [Pay |Z|

— REFINES

+

e

Figure 5: New event attributes

Example Syntax for Camille

Syntax examples for IMPLEMENTS and USES:
Example 1: A syntax close to the one used in the Rodin editor

uses uk.ac.ncl.eventb.mod_feature.syntax.implements as IMPLEMENTS
uses uk.ac.ncl.eventb.mod_feature.syntax.uses as

MACHINE m

$$IMPLEMENTS
interface_1
$$END

$$
modl : interface_2
mod2 : interface_3
$$END

Alternatively or additionally the plug-in could allow a single line version of the
statements:

MACHINE m

$IMPLEMENTS interface
$ modl : interface_2
$ mod2 : interface_3

Example 2: All additional code is encapsulated in a block to clarify that it
belongs to the modularisation plug-in.

uses uk.ac.ncl.eventb.mod_feature.syntax.implements as MODULARISATION
MACHINE m

$$SMODULARISATION
IMPLEMENTS interface_1

USES
modl : interface_2
mod2 : interface_3

$$END

Syntax examples for event attributes:

Example 1:

uses uk.ac.ncl.eventb.mod_feature.syntax.event.final as final
uses uk.ac.ncl.eventb.mod_feature.syntax.event.group as group

events
event pay
$final
$group Pay

refines Pay_entry
where ...

Example 2:
uses uk.ac.ncl.eventb.mod_feature.syntax as modularisation

events
event pay refines Pay_entry

$modularisation final, group: pay
where ...

3.3 Model Decomposition

The Model Decomposition plug-in [6] requires syntax additions to

e declare variables as either shared or private and

e declare events as either internal or external.

3.3.1 Syntax Used in Rodin

~ VARIABLES
@ ¢ &

oo [x| u
@ ¢ 3

~ EVENTS
@ ¢ O

b# @ [INITIALISATION . |notextended | - ordinary | ~ | internal ~

® ¢ I erna

END i

Figure 6: New variable and event attributes

10

3.3.2 Example Syntax for Camille

In this example only the attributes shared and ezternal are added to the syntax.
The default declaration is private for a variable and internal for an event.
uses ch.ethz.eventb.decomposition.syntax.shared as shared

uses ch.ethz.eventb.decomposition.syntax.internal as external

machine m®
variables

X

y $shared
events

$external

event evtl
then ...

3.4 Group refinement plug-in

The group refinement plug-in uses the four keywords “first”, “next”, “last” and
“or”. Here is one possible representation of the plug-in’s syntax:

machine mlb
events
event swapl
$event_order first; next swap2

then ...
end

event swap2
then ...
end
end

4 Conclusion and Next Steps

Please give us feedback on this proposal via the Deploy WP 9 mailing list?.
Decisions regarding this project will be documented at [8].

The proposal described here represents a minimal extension for Camille to sup-
port extendibility. There is obviously room for further improvement (e.g. pro-
viding a default syntax for extensions).

We expect to have a beta version of Camille available by the end of 2010. We
are happy to provide active plug-in developers with all information they need
at any time. And of course, feedback is very much appreciated.

2WP9 mailing list: deploywp9-tooling@jiscmail.ac.uk

11

References

[1]

2]

F. Fritz. A Semantics-Aware Text Editor for FEvent-B. Masters Thesis,
Heinrich-Heine-University, Diisseldorf, 2008.

Records Extension
http://wiki.event-b.org/index.php/Records_Extension.

Structured Types
http://wiki.event-b.org/index.php/Structured_Types

Modularisation Plug-in
http://wiki.event-b.org/index.php/Modularisation_Plug-in

A. Tliasov. A Lecture on modularisation method and plug-in: Introduction
and Parking Lot Case Study. Teaching Resource, Newcastle University,
2010

Event Model Decomposition
http://wiki.event-b.org/index.php/Event_Model_Decomposition

Group refinement plug-in
http://wiki.event-b.org/index.php/Group_refinement_plug-in.

Wiki Page for Documenting Decisions Regarding Extending Camille
http://wiki.event-b.org/index.php/Extending_Camille.

12

