iUML-B
Class Diagrams

Motivation

Provide a more approachable interface for newcomers to Event-B
Provide diagrams to help visualise models
Provide extra modelling features to Event-B

Sequencing of Events (see State-machines)
Lifting of Behaviour to a set of instances (0-0)

N.b. not trying to formalise UML

What is iUML-B?

A Graphical front-end for Event-B

>

Plug-in for Rodin

Not UML ...

>

>

Has its own meta-model (abstract syntax)
Semantics inherited from translation to Event-B

... but it has some similarities with UML

>

>

Class Diagrams
State Machine Diagrams

Translator generates Event-B automatically

>

>

Into the same machine (generated = read only)
Can also write standard Event-B in the same machine + events

What are the benefits?

Visualisation
> Helps understanding
> communication

Faster modelling

> One drawing node = several lines of B
> Extra information inferred from position (containment) of elements
> Experiment with different abstractions

finding useful abstractions is hard

Provides structuring constructs

> Hierarchical state-machines
Event-B has no event sequencing mechanism

> Class Data Entity relationships, Lifted methods and state-machines
Event-B has no lifting mechanism

Class Diagrams

Class Diagrams provide a way to model Data as sets (classes) of objects.
Each class links to a Carrier Set, Constant or Variable in the Event-B

@ x0 =
CONTEXT
K ma)
Linking to an existing data '¢' C1 X0
element allows more
flexibility. S
A button enables data to 0 C1
be created from the class END
diagram —
@ mo 2
- . MACHINE
Class C1 is linked to the carrier set C1 5
in context x0 seen by machine m0O SEES
(The class diagram is in mO0)) 0

Self Name

Each class has a self name. This is an identifier that refers to an example instance
of the class.

The default self name is this _<classname>. 1t can be changed in the properties
view after selecting the class.

N.B. The properties view is also used to link the
class to data of the machine or context as

described in the previous slide.

] Properties 23

4 Class

|
Overview Name:
Supertypes [Self Name:
Attributes [Data Kind:
Methods [
Constraints ‘ Elaborates:
Model

this C1
[Camer set
Container Name Comment
x0 Cl
Un-link Data ’ Un-link & Delete ’

Supertype

Class Supertype relationships generate an axiom or invariant.

@ mo 2
MACHINE

mo
SEES

<ij 0 x0

VARIABLES
o (€2 private >
INVARIANTS

o (1 supertypeOf C2: C2 € P(C1)
EVENTS

Class C2 is linked to a variable
C2 has C1 as its supertype

This generates an invariant in m0O which types C2

(n.b. subtypes are NOT assumed to be disjoint)

Attribute

A class (i.e. each of its objects) may have attributes
The attribute has a type which may be any valid Event-B (sub)set

4 C1 o C2) VARIABLES
< & att: BOOL o L2 private
o | att | private >
INVARIANTS
— L o (1 supertypeOf C2: (C2 € P(C1l) no
o | attribType att: att € C2 — BOOL
The attribute links to a variable EVENTS
(or constant) which is a relation o INITIALISATION: not extended ord:
between class instances and THEN
values from the attributes type. o init C2: 2 =2 >
o | 1nit att: att = @ |
(for attributes we usually make END

the relation a total function)

Association

A class may have associations with other classes

o C2 o C3
© assoc 0.. VARIABLES
0..n o (€2 private >
0 | assoc private
B e INVARIANTS
o (1 supertypeOf C2: C2 € P(C1l) not thet
o _ _ o |assocMult assoc: assoc € (2 « C3|n
The association links to a variable EVENTS
(or constant) which is a relation o INITIALISATION: not extended ordinary
between class instances and THEN
target class instances. o init C2: 2 =g
o | init assoc: assocC = @ |
(the cardinalities determine the END

kind of relation: surjective
injective, functional etc.)

Methods

A class may have methods

s \) \/—\
o C2 o C3
© assoc 0..n>
0..n
% method
- J
The method links to an
event in the machine. o method: not extended ordinary internal >
ANY
The event automatically o this C2 -generated class instance
gets a parameter for the o p
class instance. WHERE
o instanceType this (C2: this C2 € C2 not theor
Other parameters, guards 0 paramType p: p € C3 not theorem >
and actions can be added o (D guardsl: p € assoc[{this C2}] not theorem >
to the method (using the THEN
properties view) o (D actionsl: assoc = assoc v {this C2 » p}
END

Constructors and Destructors

A class method can be made a constructor or

destructor by setting the kind parameter in
the properties view. (The class must link to a

variable set of instances)

o construct: not extended ordinary internal -

ANY

o this C2 ,generated class instance

WHERE

o instanceType this C2: this C2 ¢ C2 not theorem >
THEN

o 1instanceUpdate this C2: C2 = C2 v {this C2} >

Kind: [constmctor

normal

Comment:

destructor

For a constructor, an unused
instance is added to the class.

Any attributes are initialised for
the instance

0 constructClassData att: att = att « {this C2»FALSE} >

END

For a destructor, a used instance is
removed from the class.

Any attributes are also removed for
the instance

destruct: not extended ordinary internal -

ANY

o this C2 -generated class instance

WHERE

o instanceType this C2: this C2 € C2 not theorem >
THEN

o 1instanceUpdate this C2:
o disposeClassData att:

o disposeClassData assoc:
END

C2 = C2 \ {this C2} >
att = {this C2} « att >
assoc = {this C2} « assoc >

Constraints

A class may contain constraints

The constraint generates an invariant
in the machine*

A

& assoc

o o2 The generation adds an antecedent
that universally quantifies the
constraint for all class instances.
(This quantification is implicit in the
class diagram)

© att: BOOL

% method

-¢- C2_constraint: att(this_C2) = TRUE = assoc[{this_C2}] # @

INVARIANTS

o (1 supertypeOf C2: (C2 € P(C1l) not theorem >

o assocMult assoc: assoc € (2 « (C3 not theorem -

o attribType att: att € C2 — BOOL not theorem

o (2 constraint: | Vthis C2-this C2eC2 = (att(this C2) = TRUE = assoc[{this C2}] # @)

* an axiom if the class diagram is contained in a context

Refinement

When a machine with a class diagram is refined,
a refined class diagram is created in the refined machine.

> C3
o C2

4

© att: BOOL

4+ method & assoc

It contains a refined class instead of each original class. They do not generate
any invariants but can be used in for new modelling (either adding to their
content or as targets in association and supertype).

Attributes and associations are retained as inherited. They do not generate any
invariants.

Methods are retained as refined versions linking to the corresponding refined
events providing a basis for refinement.

Example — Access Control

1) Activities take place in Rooms
2) Users are authorised to carry out activities

3) Users may enter Rooms only if they are authorised to carry out all the activities
that take place in that room

<~ USER

enter
any r : ROOM
% INITIALISATION | where
% enter takeplace[{r}] c authorised[{this USER}]
% leave when
¥ authorise location = location < {(this USERer)}
%+ removeAuth -
T ¢- inv_User_1: this_USER « dom(location) = takeplace[location[{this_USER}]] < authorised[{this_USER}]

0..n 0..n
© lpcation © adthorised
0.1 0..n
- \ i Y)
<~ ROOM < ACTIVITY
O takeplace 0..n
0..n

Example — Access Control Refinement

4) Users are allocated Tokens (allocateToken is a constructor and sets holder)
5) Holding a Token enables access to Rooms
6) Tokens expire (expireToken is a destructor)

< TOKEN © validToken

<

% allocateToken
. . ¥ expireToken

-¢- refRel: (takeplace[{room(tok)}}] « authorised[{holder(tok)}])
0
.n ‘ '
0.
© holder
O |room 1.1
<% USER
0.1 0.n
1.1 T 2 INITIALISATION
, ; JE % enter
< ROOM| <% ACTIVITY % leave
% authorise
oo rakenlece €= % removeAuth
‘ S d.n . .
I on 0O.n 0.n

Installation

Help — Install New Software...

[NON) Install

Available Software

Check the items that you wish to install.

Work with: | Rodin - http://rodin-b-sharp.sourceforge.net/updates Add...

Find more software by working with the "Available Software Sites" preferences.

Name Version
1 » 000 Composition and Decomposition
> 000 Editors

| » 000 Frameworks
B v 00 Modelling Extensions

O (J* Atomicity Decomposition 1.0.0

O {J* Event-B Qualitative Probability 0.2.3.201510091525
O (J* Event-B Qualitative Probability SDK 0.2.3.201510091525
0 (J-Event-B Theory Feature 3.0.0

v " iUML-B Class Diagrams (for Rodin 3.x.x)

0 4#iUMLB State-Machines (for Rodin 3.x.x) 3.4.1

O C-t‘_&iUMLB State-Machines (for Rodin 3.x.x) SDK 3.4.1

O §:Records 1.0.1

O LB UML-B Modelling Environment (for Rodin 3.x.x) 2.3.0

" » 000 Prover Extensions

1 » 000 Utilities

| » 000 validation

Select All Deselect All 1 item selected

Summary

Class Diagrams for modelling data relationships

Classes — sets (Carrier Sets, Constants Variables)
self name

Supertypes - subsets

Attributes — relations (usually functions)

Associations - relations

Methods — events
constructors and destructors

Constraints — invariants or Axioms

Refined Classes

