
1			

iUML-B		
Class	Diagrams	

2			

Mo3va3on	

Provide	a	more	approachable	interface	for	newcomers	to	Event-B	
	
Provide	diagrams	to	help	visualise	models	
	
Provide	extra	modelling	features	to	Event-B	

	Sequencing	of	Events	(see	State-machines)	
	LiGing	of	Behaviour	to	a	set	of	instances	(O-O)	

	
	
N.b.	not	trying	to	formalise	UML	

3			

What	is	iUML-B?	

A	Graphical	front-end	for	Event-B	
►  Plug-in	for	Rodin	

	
Not	UML	…	

►  Has	its	own	meta-model	(abstract	syntax)	
►  Seman3cs	inherited	from	transla3on	to	Event-B	

	…	but	it	has	some	similari3es	with	UML	
►  Class	Diagrams	
►  State	Machine	Diagrams	

	
Translator	generates	Event-B	automa3cally		

►  Into	the	same	machine 	(generated	=	read	only)	
►  Can	also	write	standard	Event-B	in	the	same	machine	+	events	

	

4			

What	are	the	benefits?	

Visualisa3on	
►  Helps	understanding	
►  communica3on	

Faster	modelling	
►  One	drawing	node	=	several	lines	of	B	
►  Extra	informa3on	inferred	from	posi3on	(containment)	of	elements	
►  Experiment	with		different	abstrac3ons	

Provides	structuring	constructs	
►  Hierarchical	state-machines	

	Event-B	has	no	event	sequencing	mechanism	

►  Class 	Data	En3ty	rela3onships,	LiGed	methods	and	state-machines	
	Event-B	has	no	li-ing	mechanism	

finding	useful	abstrac4ons	is	hard	

5			

Class	Diagrams	

Class	Diagrams	provide	a	way	to	model	Data	as	sets	(classes)	of	objects.	
	Each	class	links	to	a	Carrier	Set,	Constant	or	Variable	in	the	Event-B	

	
Class	C1	is	linked	to	the	carrier	set	C1		

	in	context	x0	seen	by	machine	m0	
	 	(The	class	diagram	is	in	m0)	

Linking	to	an	exis4ng	data	
element	allows	more	
flexibility.	
A	bu@on	enables	data	to	
be	created	from	the	class	
diagram	

6			

Self	Name	

Each	class	has	a	self	name.	This	is	an	iden3fier	that	refers	to	an	example	instance	
of	the	class.		

The	default	self	name	is	this_<classname>.	 		It	can	be	changed	in	the	proper3es	
view	aGer	selec3ng	the	class.	

N.B.	The	proper4es	view	is	also	used	to	link	the	
class	to	data	of	the	machine	or	context	as	
described	in	the	previous	slide.		

7			

Supertype	

Class	Supertype	rela3onships	generate	an	axiom	or	invariant.	

Class	C2	is	linked	to	a	variable	
C2	has	C1	as	its	supertype	
This	generates	an	invariant	in	m0	which	types	C2	
	
(n.b.	subtypes	are	NOT	assumed	to	be	disjoint)	

8			

Aeribute	

A	class	(i.e.	each	of	its	objects)	may	have	aeributes	
	The	aeribute	has	a	type	which	may	be	any	valid	Event-B	(sub)set	

The	aeribute	links	to	a	variable	
(or	constant)	which	is	a	rela3on	
between	class	instances	and	
values	from	the	aeributes	type.	
	
(for	aeributes	we	usually	make	
the	rela3on	a	total	func4on)	

9			

Associa3on	

A	class	may	have	associa3ons	with	other	classes	
	

The	associa3on	links	to	a	variable	
(or	constant)	which	is	a	rela3on	
between	class	instances	and	
target	class	instances.	
	
(the	cardinali3es	determine	the	
kind	of	rela3on:	surjec3ve	
injec3ve,	func3onal	etc.)	

10			

Methods	

The	method	links	to	an	
event	in	the	machine.	
	
The	event	automa3cally	
gets	a	parameter	for	the	
class	instance.	
	
Other	parameters,	guards	
and	ac3ons	can	be	added	
to	the	method	(using	the	
proper3es	view)	

A	class	may	have	methods	
	

11			

Constructors	and	Destructors	

For	a	constructor,	an	unused	
instance	is	added	to	the	class.	
	
Any	aeributes	are	ini3alised	for	
the	instance	

A	class	method	can	be	made	a	constructor	or	
destructor	by	sehng	the	kind	parameter	in	
the	proper3es	view.	(The	class	must	link	to	a	
variable	set	of	instances)	

	

For	a	destructor,	a	used	instance	is	
removed	from	the	class.		
	
Any	aeributes	are	also	removed	for	
the	instance	

12			

Constraints	

A	class	may	contain	constraints	
	

The	constraint	generates	an	invariant	
in	the	machine*		
	
The	genera3on	adds	an	antecedent	
that	universally	quan3fies	the	
constraint	for	all	class	instances.	
(This	quan3fica3on	is	implicit	in	the	
class	diagram)	

*	an	axiom	if	the	class	diagram	is	contained	in	a	context		

13			

Refinement	

When	a	machine	with	a	class	diagram	is	refined,	
	 	a	refined	class	diagram	is	created	in	the	refined	machine.	

It	contains	a	refined	class	instead	of	each	original	class.	They	do	not	generate	
any	invariants	but	can	be	used	in	for	new	modelling	(either	adding	to	their	
content	or	as	targets	in	associa3on	and	supertype).	
	
Aeributes	and	associa3ons	are	retained	as	inherited.	They	do	not	generate	any	
invariants.	
	
Methods	are	retained	as	refined	versions	linking	to	the	corresponding	refined	
events	providing	a	basis	for	refinement.	

14			

Example	–	Access	Control	

enter
any r : ROOM
where

 takeplace[{r}] ⊆ authorised[{this_USER}]
when

 location ≔ location {(this_USER↦r)}

1)	Ac3vi3es	take	place	in	Rooms	
2)	Users	are	authorised	to	carry	out	ac3vi3es	
3)	Users	may	enter	Rooms	only	if	they	are	authorised	to	carry	out	all	the	ac3vi3es	

that	take	place	in	that	room	

15			

Example	–	Access	Control	Refinement	

4)	Users	are	allocated	Tokens	(allocateToken	is	a	constructor	and	sets	holder)	
5)	Holding	a	Token	enables	access	to	Rooms		
6)	Tokens	expire	(expireToken	is	a	destructor)	

16			

Installa3on	
Help	–	Install	New	SoGware…	

17			

Summary	

Class	Diagrams	for	modelling	data	rela3onships	
	
Classes	–	sets			(Carrier	Sets,	Constants	Variables)	

	self	name	
Supertypes	-	subsets	
Aeributes	–	rela3ons	(usually	func3ons)	
Associa3ons	-	rela3ons	
Methods	–	events	

	constructors	and	destructors	
Constraints	–	invariants	or	Axioms	
Refined	Classes	

