
ProR Rodin/Event-B Integration
Content

User Story
Glossary
Architecture Outline

Drag & Drop + Model Element Cell Renderer
Use Cases

Creating a trace
Editing a model element
Deleting a model element
Renaming a model file
Opening a ReqIF model

Color Highlighting
Use Cases

Using model element names in artifact attributes
Renaming a model element

Link Management
Use Cases

Editing an artifact with trace(s)
Event-B ReqIF File Wizard (UC-WIZ)

Project Setup
Out of Scope

Event-B ReqIF File Wizard
Further Development

User Story
At the beginning the user starts the ProR tool. His first task is to create a new project and
a corresponding ReqIF file in order to create new requirements. Typically, a rough set of
requirements R1..Rn already exists, which has to be transferred to ProR. In practice this is
often a mixture of requirements, domain properties and even specification elements. We refer
to these as artifacts.

Next, a subset of the artifacts is modelled in Rodin. The user creates a new Event-B
component. He starts with a suited artifact of interest Ri and assigns it the type “traced artifact”.
He then models the domain properties that are necessary to express Ri, and proceeds to
model Ri itself. This may result in a revision of Ri, as well as the addition of new artifacts.
He continues with other suited artifacts and restructures artifacts and models as he sees fit.
During this process, he creates a traceability between artifacts and their corresponding model
elements. This is done via drag and drop, and results in SpecRelations. Source and target of
the link are marked as “validated”.

As the user continues to model, traces that point to or from elements that are changed will be

1

marked as “invalidated”. This means that the ProR tool will inform the user that he has to re-
verify the corresponding traces. We define verification as a process for assuring that the model
elements satisfy the requirements.

Names of model elements are picked up by the tool and allow marking and color highlighting in
the requirements text.

The user will eventually have a set of artifacts and a model that are connected by traces, and
that have the following properties:

● All “traced artifact”s have at least one outgoing trace
● All traces are marked as “validated”

The user runs an analysis tool that reports all violations of these properties.

Glossary

Artifact A requirement, domain property or other piece of information,
represented as a SpecObject.

Model Element Any Event-B element. A model element may have sub-model
elements, e.g. both an event and a guard are both model elements.

Model Element Name The model element name is the identifier label of a model element.
For instance, the identifier of a variable is the variable name. In
case of an invariant the identifier is the label directly to the left of the
invariant (a typical identifier of an invariant is “inv01”).

Proxy Model Element A SpecObject that represents a model element.

Link, Trace Synonyms for a SpecRelations object.

Architecture Outline
This section outlines the architecture of the Rodin Integration.

Idea: Predefined Event-B specific ReqIF types and presentation configurations. The user
can then create a new ReqIF file with these types and presentation configurations already
predefined.

The Rodin Integration is subdivided into four sub projects. Three sub projects are implemented
as presentation plugins for ProR. The fourth sub project comes in the form of a wizard which
creates a ReqIF model file with the predefined Event-B specific ReqIF types. The following
sections outline these sub project as well describe the needed Event-B specific ReqIF types.

2

Drag & Drop + Model Element Cell Renderer
Name: EventB_Proxy_Presentation (PresentationConfiguration)

Description: This presentation plugin is responsible for the drag and drop functionality of
model elements from the Event-B editor to the ProR specification editor. More precisely: ProR
locates the proxy model element for the model element, or creates one if it does not exist yet.
ProR creates a trace/link between the proxy model element and the artifact. Furthermore the
presentation plugin is responsible to render the cell containing the proxy model element (i.e.
showing the variable name).

The following Event-B specific ReqIf types are needed:

● Trace (SpecRelationType): Represents the trace between two artifacts (i.e. between a
requirement and a model element).

● Event-B Proxy Model Element (SpecObjectType): Represents an Event-B model
element as an “proxy” spec object.

● Description (AttributeDefinition): The description attribute contains the id of the Event-
B model element and the source file (machine or context). Furthermore, the description
attribute contains the model element in plain text. This is useful to synchronize with
Event-B and to detect changes whenever the specification editor is closed.

● T_EventB_Provy (DatatypeDefinition/String): This DataType in connection with the
EventB_Proxy_Presentation presentation configuration is responsible for rendering the
the id + source and for displaying the model element (i.e. an invariant).

Use Cases
Prefix: UC-DND
Actors: User, ProR

3

Creating a trace

UC-DND-CREATE-
TRACE

Creating a trace

Primary Actor User, ProR

Precondition At least one artifact and one model element exists.

Guarantee A proxy model element is created (if does not exist yet) and a
trace between the artifact and the model element is established.

Main Success
Scenario

1. The user selects the model element in the outline view of
the Event-B editor.

2. The user drags the model element (target) and drops it to
the corresponding artifact (source).

3. ProR locates the proxy model element for the model
element, or creates one if it does not exist yet.

4. ProR creates a trace/link between the proxy model
element and the artifact.

Variation -

Exceptions Trace already exists. In this case nothing happens.

Editing a model element

UC-DND-EDIT-
MODEL-ELEMENT

Editing a model element

Primary Actor User, ProR

Precondition 1. A corresponding proxy model element of the edited
model element exists.

2. ProR is open.

Guarantee The proxy model element is updated.

Main Success
Scenario

1. The user edits a model element (i.e. an invariant).
2. ProR updates the corresponding proxy model element

upon save of the Event-B editor.

Variation -

Exceptions Note that ProR can only react to model changes if the ReqIF
model is open, while the Event-B model is being edited.
See: UC-DND-OPEN-REQIF-MODEL

Deleting a model element

UC-DND-DELETE- Deleting a model element

4

MODEL-FILE

Primary Actor User, ProR

Precondition ProR is open

Guarantee -

Main Success
Scenario

1. The user deletes a model element.
2. ProR marks the proxy model element as “missing”.

Variation The user deletes a model file (i.e. machine or context file): In
this case all linked model elements of the model file are marked
as “missing”.

Exceptions Note that ProR can only react to model changes if the ReqIF
model is open, while the Event-B model is being edited.
See: UC-DND-OPEN-REQIF-MODEL

Renaming a model file

UC-RENAME-MODEL-
FILE

Renaming a model file

Primary Actor User, ProR

Precondition -

Guarantee -

Main Success
Scenario

1. The user renames a model file (i.e. machine or context
file).

2. ProR updates the references of the proxy model
elements.

Variation -

Exceptions Note that ProR can only react to model changes if the ReqIF
model is open, while the Event-B model is being edited.
See: UC-DND-OPEN-REQIF-MODEL

Opening a ReqIF model

UC-DND-OPEN-
REQIF-MODEL

Opening a ReqIF model

Primary Actor User, ProR

Precondition The model files exists under the same names as referenced in
the proxy model elements and the ProR editor is closed.

Guarantee Changes in the model have been detected and acted upon.

5

Main Success
Scenario

1. The user opens a ReqIF model.
2. ProR detects changes made in the model.
3. ProR updates the affected proxy model elements (See

also: UC-DND-EDIT-MODEL-ELEMENT and UC-DND-
DELETE-MODEL-FILE).

4. ProR marks the proxy model elements which are not
found in the Event-B model as “missing”.

Variation -

Exceptions -

Color Highlighting
Name: Highlighting (PresentationConfiguration)

Description: This presentation plugin is responsible for highlighting predefined key words (i.e.
model element names).

The following ReqIF types are needed:

● T_Highlighting (DatatypeDefinition/String): This DataType in connection with the
Highlighting presentation configuration is responsible for highlighting predefined key
words (i.e. model element names).

Use Cases
Prefix: UC-COLOR
Actors: User, ProR

Using model element names in artifact attributes

UC-COLOR-
HIGHLIGHTING

Using model element names in artifacts attributes

Primary Actor User, ProR

Precondition -

Guarantee The model element names in the artifact attribute (i.e.
description) are highlighted.

6

Main Success
Scenario

1. The user enters the name of a model element (in square
brackets) in an artifact attribute (i.e. description).

2. ProR highlights the model element name in the artifact
attribute (i.e. description).

Scenario Renderer Editor

name not marked black text red underline

marked & exists blue text blue text

marked & does not exist red text red text

Variation

Exceptions Note that ProR can only react to artifact changes which are
located outside of the ReqIF model, if the ReqIF model is open.

Renaming a model element

UC-COLOR-RENAME-
MODEL-ELEMENT

Renaming a model element

Primary Actor User, ProR

Precondition -

Guarantee The highlighted model element names are updated in the artifact
attributes (i.e. description).

Main Success
Scenario

1. The user renames a model element in the Event-B editor
(i.e. a variable).

2. ProR updates the highlighted model element names in
the artifact attributes (i.e. description) upon save of the
Event-B editor.

Variation -

Exceptions - Note that ProR can only react to artifact changes which are
located outside of the ReqIF model, if the ReqIF model is open.
- We get a problem if a variable and constant have the same
name.

Link Management
Name: LinkManagement

Description: This presentation plugin is responsible for managing the traces between artifacts
(i.e. between a requirement and a model element). For instance it manages the status attribute
of the trace by setting the right status.

7

The following ReqIF types are needed:

● Trace (SpecRelationType): Represents the trace between two artifacts (i.e. between a
requirement and a model element).

● SourceStatus (AttributeDefinition): Represents the attribute for the source status with
the Status DatypeDefinition (see below).

● TargetStatus (AttributeDefinition): Represents the attribute for the target status with
the Status DatypeDefinition (see below).

● T_Status (DatatypeDefinition/Boolean): The Status attribute is either true or false.
For instance true could mean “changed” (Is set whenever a model element or the
requirement respectively) and false “not changed” (Means that the model element or
requirement is in a “clean” status, where nothing was changed, i.e. after the first creation
of the trace).

Use Cases
Prefix: UC-LINK
Actors: User, ProR

Editing an artifact with trace(s)

UC-LINK-EDIT-REQ Editing an artifact with trace(s)

Primary Actor User, ProR

Precondition At least one trace between two artifacts exists.

Guarantee The source or target status attribute of the corresponding traces
are set to “changed”.

Main Success
Scenario

1. The user edits an artifact (i.e. a requirement).
2. ProR sets the source or target status attribute of the

trace(s) to “changed”.

8

Variation If the status attribute of the trace(s) are already set to “changed”,
then this use case has no effect.

Exceptions Note that ProR can only react to artifact changes which are
located outside of the ReqIF model, if the ReqIF model is open.

Event-B ReqIF File Wizard (UC-WIZ)

Project Setup

UC-WIZ-PROJECT-
SETUP

Project Setup

Primary Actor User, ProR

Precondition -

Guarantee A ReqIF model is created with the predefined Event-B specific
ReqIF types and presentation configurations.

Main Success Scenario 1. The user opens the Event-B ReqIF File wizard.
2. The user enters a name for the ReqIF file.
3. The user confirms his entries.
4. ProR creates a new ReqIF file with the predefined

Event-B specific ReqIF types and presentation
configurations.

5. ProR opens the created ReqIF model.

Variation -

Exceptions -

Out of Scope
We should define on which changes this presentation plugin should react. One idea is to define
a list of source and target datatypes. I.e.:

● T_SourceDatatype (DatatypeDefinition): The LinkManagement presentation
configuration listens on changes made in attributes which have this datatype and sets
the correct status of the source.

● T_TargetDatatype (DatatypeDefinition): The LinkManagement presentation
configuration listens on changes made in attributes which have this datatype and sets
the correct status of the target.

However, we decided that this feature should not be part of the first iteration. Furthermore, this
feature needs more discussion.

After editing a Event-B model element (i.e. the name of the variable) ProR changes
automatically all marked keywords in the requirements text. However, this leads to a “change” of
the source or target respectively. Should we handle this really as change?

9

Event-B ReqIF File Wizard
The Event-B ReqIF File Wizard sub project is the “aggregating project”. It is responsible to
create a ReqIF file with the predefined Event-B specific ReqIF types (see last sections) and to
provide the user a “start-to-work“ specification editor.

In the first version it simply creates this file under a specified name. However, for further
development it could be possible to provide more features for customizing the specification.

Further Development
This sections lists some ideas for further development.

● Xtext could be used to provide a DSL which is linked to a model. So, the user can use
the code completion for adding model element names in the requirements text.

● Mylyn like features where the user clicks on a requirement to be modelled and mark this
requirement as “is modelled now”

● The Highlighting Presentation Configuration Plugin could provide an extension point
which defines how to provide a list of key words. This is interesting for other formal
languages like Classical-B.

10

