
Outline

System Modelling and Design
Refining Software Engineering

Ken Robinson

School of Computer Science & Engineering
The University of New South Wales, Sydney Australia

c©Ken Robinson 2009

mailto::k.robinson@unsw.edu.au

Rodin Workshop
Southampton
16th July 2009

mailto::k.robinson@unsw.edu.au


Outline

Outline I



Outline

Overview

This talk is going to be presented from the point of view of a user of
Event B and Rodin, in particular, the use of both in the teaching of
undergraduate software engineering students at UNSW (Sydney
Australia)

We are concerned with help students produce designs that they
understand.

This talk is about how we try to do that using EventB.



Outline

Overview

This talk is going to be presented from the point of view of a user of
Event B and Rodin, in particular, the use of both in the teaching of
undergraduate software engineering students at UNSW (Sydney
Australia)

We are concerned with help students produce designs that they
understand.

This talk is about how we try to do that using EventB.



Outline

Overview

This talk is going to be presented from the point of view of a user of
Event B and Rodin, in particular, the use of both in the teaching of
undergraduate software engineering students at UNSW (Sydney
Australia)

We are concerned with help students produce designs that they
understand.

This talk is about how we try to do that using EventB.



Outline

Overview

This talk is going to be presented from the point of view of a user of
Event B and Rodin, in particular, the use of both in the teaching of
undergraduate software engineering students at UNSW (Sydney
Australia)

We are concerned with help students produce designs that they
understand.

This talk is about how we try to do that using EventB.



Outline

Software Engineering

This talk is largely concerned with Software Engineering and software
engineering education.

There is an interesting sign as you ascend the stairs in this building:

Dependable Systems & Software Engineering

There is surely more than a suggestion that Dependable Systems
and Software Engineering are mutually exclusive?

To me it expresses a sad truth of software engineering.



Outline

Software Engineering

This talk is largely concerned with Software Engineering and software
engineering education.

There is an interesting sign as you ascend the stairs in this building:

Dependable Systems & Software Engineering

There is surely more than a suggestion that Dependable Systems
and Software Engineering are mutually exclusive?

To me it expresses a sad truth of software engineering.



Outline

Software Engineering

This talk is largely concerned with Software Engineering and software
engineering education.

There is an interesting sign as you ascend the stairs in this building:

Dependable Systems & Software Engineering

There is surely more than a suggestion that Dependable Systems
and Software Engineering are mutually exclusive?

To me it expresses a sad truth of software engineering.



Outline

Software Engineering

This talk is largely concerned with Software Engineering and software
engineering education.

There is an interesting sign as you ascend the stairs in this building:

Dependable Systems & Software Engineering

There is surely more than a suggestion that Dependable Systems
and Software Engineering are mutually exclusive?

To me it expresses a sad truth of software engineering.



Outline

Software Engineering

This talk is largely concerned with Software Engineering and software
engineering education.

There is an interesting sign as you ascend the stairs in this building:

Dependable Systems & Software Engineering

There is surely more than a suggestion that Dependable Systems
and Software Engineering are mutually exclusive?

To me it expresses a sad truth of software engineering.



Outline

System modelling not formal methods

While many people —perhaps most— will regard EventB as a formal
method, I strongly resist that classification.

My objectives are:

1 to help students reason about their designs;
2 to help them to appreciate design, as distinct from

implementation;
3 to show them that there are rigorous ways of understanding

systems in general, and software in particular.



Outline

System modelling not formal methods

While many people —perhaps most— will regard EventB as a formal
method, I strongly resist that classification.

My objectives are:

1 to help students reason about their designs;
2 to help them to appreciate design, as distinct from

implementation;
3 to show them that there are rigorous ways of understanding

systems in general, and software in particular.



Outline

System modelling not formal methods

While many people —perhaps most— will regard EventB as a formal
method, I strongly resist that classification.

My objectives are:

1 to help students reason about their designs;
2 to help them to appreciate design, as distinct from

implementation;
3 to show them that there are rigorous ways of understanding

systems in general, and software in particular.



Outline

System modelling not formal methods

While many people —perhaps most— will regard EventB as a formal
method, I strongly resist that classification.

My objectives are:

1 to help students reason about their designs;
2 to help them to appreciate design, as distinct from

implementation;
3 to show them that there are rigorous ways of understanding

systems in general, and software in particular.



Outline

System modelling not formal methods

While many people —perhaps most— will regard EventB as a formal
method, I strongly resist that classification.

My objectives are:

1 to help students reason about their designs;
2 to help them to appreciate design, as distinct from

implementation;
3 to show them that there are rigorous ways of understanding

systems in general, and software in particular.



Outline

Engineering Methods

To do all of the above we will use engineering methods to model and
then design Systems.

That will involve the use of mathematics, in this case set theory and
logic.

Mathematics is an intrinsic part of all engineering design.

I find the term formal methods to be counter-productive. To begin with
the word formal tends to obscure the fact that any design process
—any engineering process— will involve a significant amount of
informality. But beyond that I find that people think that because
formal methods involves proof then therefore they are given
assurance that whatever they produce is correct.

I want to emphasise the fact that discharging proof obligations in
event B gives proof of consistency rather than proof of correctness;
indeed I stress the fact that all humanly engineered systems can fail.



Outline

Engineering Methods

To do all of the above we will use engineering methods to model and
then design Systems.

That will involve the use of mathematics, in this case set theory and
logic.

Mathematics is an intrinsic part of all engineering design.

I find the term formal methods to be counter-productive. To begin with
the word formal tends to obscure the fact that any design process
—any engineering process— will involve a significant amount of
informality. But beyond that I find that people think that because
formal methods involves proof then therefore they are given
assurance that whatever they produce is correct.

I want to emphasise the fact that discharging proof obligations in
event B gives proof of consistency rather than proof of correctness;
indeed I stress the fact that all humanly engineered systems can fail.



Outline

Engineering Methods

To do all of the above we will use engineering methods to model and
then design Systems.

That will involve the use of mathematics, in this case set theory and
logic.

Mathematics is an intrinsic part of all engineering design.

I find the term formal methods to be counter-productive. To begin with
the word formal tends to obscure the fact that any design process
—any engineering process— will involve a significant amount of
informality. But beyond that I find that people think that because
formal methods involves proof then therefore they are given
assurance that whatever they produce is correct.

I want to emphasise the fact that discharging proof obligations in
event B gives proof of consistency rather than proof of correctness;
indeed I stress the fact that all humanly engineered systems can fail.



Outline

Engineering Methods

To do all of the above we will use engineering methods to model and
then design Systems.

That will involve the use of mathematics, in this case set theory and
logic.

Mathematics is an intrinsic part of all engineering design.

I find the term formal methods to be counter-productive. To begin with
the word formal tends to obscure the fact that any design process
—any engineering process— will involve a significant amount of
informality. But beyond that I find that people think that because
formal methods involves proof then therefore they are given
assurance that whatever they produce is correct.

I want to emphasise the fact that discharging proof obligations in
event B gives proof of consistency rather than proof of correctness;
indeed I stress the fact that all humanly engineered systems can fail.



Outline

Engineering Methods

To do all of the above we will use engineering methods to model and
then design Systems.

That will involve the use of mathematics, in this case set theory and
logic.

Mathematics is an intrinsic part of all engineering design.

I find the term formal methods to be counter-productive. To begin with
the word formal tends to obscure the fact that any design process
—any engineering process— will involve a significant amount of
informality. But beyond that I find that people think that because
formal methods involves proof then therefore they are given
assurance that whatever they produce is correct.

I want to emphasise the fact that discharging proof obligations in
event B gives proof of consistency rather than proof of correctness;
indeed I stress the fact that all humanly engineered systems can fail.



Outline

Change of Vocabulary

The above involves a change of vocabulary:

verify in place of prove
consistent in place of correct

The above all goes to reinforce the notion that the correctness of a
model depends on the informal interpretation of the requirements,
and the subsequent expression of that interpretation in, say Event B.



Outline

Change of Vocabulary

The above involves a change of vocabulary:

verify in place of prove
consistent in place of correct

The above all goes to reinforce the notion that the correctness of a
model depends on the informal interpretation of the requirements,
and the subsequent expression of that interpretation in, say Event B.



Outline

Change of Vocabulary

The above involves a change of vocabulary:

verify in place of prove
consistent in place of correct

The above all goes to reinforce the notion that the correctness of a
model depends on the informal interpretation of the requirements,
and the subsequent expression of that interpretation in, say Event B.



Outline

Change of Vocabulary

The above involves a change of vocabulary:

verify in place of prove
consistent in place of correct

The above all goes to reinforce the notion that the correctness of a
model depends on the informal interpretation of the requirements,
and the subsequent expression of that interpretation in, say Event B.



Outline

Courses

I’m going to discuss three courses that students in our software
engineering program take in their second year.

Semester Course
1 System Modelling and Design
1 Software Engineering Workshop 2A
2 Software Engineering Workshop 2B

System Modelling and Design is the course in which I use event B
and Rodin to teach modelling and design

The other two courses are software engineering workshop courses in
which students work in teams on the design and implementation of
some system.



Outline

Courses

I’m going to discuss three courses that students in our software
engineering program take in their second year.

Semester Course
1 System Modelling and Design
1 Software Engineering Workshop 2A
2 Software Engineering Workshop 2B

System Modelling and Design is the course in which I use event B
and Rodin to teach modelling and design

The other two courses are software engineering workshop courses in
which students work in teams on the design and implementation of
some system.



Outline

No Concept of Design

I find that the students who take COMP2111, although in many cases
being very good to outstanding programmers are unable to discuss
the design of their programs.

Indeed they regard a request to discuss the design of a program as
being nonsensical and are usually unable to give an answer, let alone
a good answer.

Have you ever tried that sort of exercise?

They have been taught to write programs, to think in programs, but
never what the program means. The only way they know of verifying
a program is to test it, and, of course, they still can’t explain their
programs.

To me this is a serious flaw in the education of software engineers.



Outline

No Concept of Design

I find that the students who take COMP2111, although in many cases
being very good to outstanding programmers are unable to discuss
the design of their programs.

Indeed they regard a request to discuss the design of a program as
being nonsensical and are usually unable to give an answer, let alone
a good answer.

Have you ever tried that sort of exercise?

They have been taught to write programs, to think in programs, but
never what the program means. The only way they know of verifying
a program is to test it, and, of course, they still can’t explain their
programs.

To me this is a serious flaw in the education of software engineers.



Outline

No Concept of Design

I find that the students who take COMP2111, although in many cases
being very good to outstanding programmers are unable to discuss
the design of their programs.

Indeed they regard a request to discuss the design of a program as
being nonsensical and are usually unable to give an answer, let alone
a good answer.

Have you ever tried that sort of exercise?

They have been taught to write programs, to think in programs, but
never what the program means. The only way they know of verifying
a program is to test it, and, of course, they still can’t explain their
programs.

To me this is a serious flaw in the education of software engineers.



Outline

No Concept of Design

I find that the students who take COMP2111, although in many cases
being very good to outstanding programmers are unable to discuss
the design of their programs.

Indeed they regard a request to discuss the design of a program as
being nonsensical and are usually unable to give an answer, let alone
a good answer.

Have you ever tried that sort of exercise?

They have been taught to write programs, to think in programs, but
never what the program means. The only way they know of verifying
a program is to test it, and, of course, they still can’t explain their
programs.

To me this is a serious flaw in the education of software engineers.



Outline

No Concept of Design

I find that the students who take COMP2111, although in many cases
being very good to outstanding programmers are unable to discuss
the design of their programs.

Indeed they regard a request to discuss the design of a program as
being nonsensical and are usually unable to give an answer, let alone
a good answer.

Have you ever tried that sort of exercise?

They have been taught to write programs, to think in programs, but
never what the program means. The only way they know of verifying
a program is to test it, and, of course, they still can’t explain their
programs.

To me this is a serious flaw in the education of software engineers.



Outline

Learning how to model

In this course I try to teach the students how to use non-determinism,
abstraction and logic to model systems in which they have confidence
in the model of the system’s behaviour.

I also encourage the development of a model through a sequence of
refinement layers, in which each layer deals with one aspect of
behaviour.

Essentially I am following what Abrial calls quote ” correct by
construction”.



Outline

Learning how to model

In this course I try to teach the students how to use non-determinism,
abstraction and logic to model systems in which they have confidence
in the model of the system’s behaviour.

I also encourage the development of a model through a sequence of
refinement layers, in which each layer deals with one aspect of
behaviour.

Essentially I am following what Abrial calls quote ” correct by
construction”.



Outline

Learning how to model

In this course I try to teach the students how to use non-determinism,
abstraction and logic to model systems in which they have confidence
in the model of the system’s behaviour.

I also encourage the development of a model through a sequence of
refinement layers, in which each layer deals with one aspect of
behaviour.

Essentially I am following what Abrial calls quote ” correct by
construction”.



Outline

Moving to Event B: the experience

I have been using Classical B and Event B since about 1996 and
although both forms of B. have essentially the same mathematical
toolkit and are essentially interchangeable I have found event B. to be
a significantly different experience, and a consistently rewarding
experience.



Outline

An example

I will illustrate with an example.

I have been using a traffic lights example for a very long time. When I
came to recast the example in event B I had an insight which I’d never
seen before. My previous examples have had red, green and amber
lights with events or operations to change the lights to one of those
colours.

This now seemed inappropriate. It seemed more appropriate to
consider the steady state of an intersection controlled by traffic lights
to consist of only red and green lights. Amber lights only occur during
a transition. The amber lights are essentially a safety device to
prevent sudden changes from green to red. Thus the top level model
of a traffic light system consists of a state consisting of only red and
green lights and two events to change the light in a particular
direction to green and red, respectively. The refinement introduces
amber to the state and provides a number of events to sequence
between top level states.



Outline

An example

I will illustrate with an example.

I have been using a traffic lights example for a very long time. When I
came to recast the example in event B I had an insight which I’d never
seen before. My previous examples have had red, green and amber
lights with events or operations to change the lights to one of those
colours.

This now seemed inappropriate. It seemed more appropriate to
consider the steady state of an intersection controlled by traffic lights
to consist of only red and green lights. Amber lights only occur during
a transition. The amber lights are essentially a safety device to
prevent sudden changes from green to red. Thus the top level model
of a traffic light system consists of a state consisting of only red and
green lights and two events to change the light in a particular
direction to green and red, respectively. The refinement introduces
amber to the state and provides a number of events to sequence
between top level states.



Outline

An example

I will illustrate with an example.

I have been using a traffic lights example for a very long time. When I
came to recast the example in event B I had an insight which I’d never
seen before. My previous examples have had red, green and amber
lights with events or operations to change the lights to one of those
colours.

This now seemed inappropriate. It seemed more appropriate to
consider the steady state of an intersection controlled by traffic lights
to consist of only red and green lights. Amber lights only occur during
a transition. The amber lights are essentially a safety device to
prevent sudden changes from green to red. Thus the top level model
of a traffic light system consists of a state consisting of only red and
green lights and two events to change the light in a particular
direction to green and red, respectively. The refinement introduces
amber to the state and provides a number of events to sequence
between top level states.



Outline

The Software Engineering Workshops

In the workshop that runs in parallel with COMP2111, students work
on the specification or model of a system that they will take through to
an implemented prototype in the second workshop. The model that
the students produce is in event B.

Last year students worked on an iTunes type system. This year
students are working on an eBay type system. This year the
modelling has gone very well with students demonstrating their
models using AnimB. AnimB provides very impressive animation.

In the second workshop students will take their model and produce
an implementation of a prototype. At the moment, the implementation
is done using informal translation rules to translate into either Java or
Scala.



Outline

The Software Engineering Workshops

In the workshop that runs in parallel with COMP2111, students work
on the specification or model of a system that they will take through to
an implemented prototype in the second workshop. The model that
the students produce is in event B.

Last year students worked on an iTunes type system. This year
students are working on an eBay type system. This year the
modelling has gone very well with students demonstrating their
models using AnimB. AnimB provides very impressive animation.

In the second workshop students will take their model and produce
an implementation of a prototype. At the moment, the implementation
is done using informal translation rules to translate into either Java or
Scala.



Outline

The Software Engineering Workshops

In the workshop that runs in parallel with COMP2111, students work
on the specification or model of a system that they will take through to
an implemented prototype in the second workshop. The model that
the students produce is in event B.

Last year students worked on an iTunes type system. This year
students are working on an eBay type system. This year the
modelling has gone very well with students demonstrating their
models using AnimB. AnimB provides very impressive animation.

In the second workshop students will take their model and produce
an implementation of a prototype. At the moment, the implementation
is done using informal translation rules to translate into either Java or
Scala.



Outline

Searching for a model

At the time the students were working on producing their Event B
model of their eBay system, I introduced a model of a lift control
system into COMP2111 to demonstrate the layering approach on a
non-trivial example.

The lift control system model consists of a the following:

1 basic lift system in which the rules for lift movement are
established but lift movement is essentially non-deterministic

2 refinement in which we add lift doors
3 refinement in which we added floor doors
4 a refinement in which we add lift buttons
5 a refinement in which we add floor buttons

The first three layers were completed in lectures

The remaining two layers were given as an assignment.



Outline

Searching for a model

At the time the students were working on producing their Event B
model of their eBay system, I introduced a model of a lift control
system into COMP2111 to demonstrate the layering approach on a
non-trivial example.

The lift control system model consists of a the following:

1 basic lift system in which the rules for lift movement are
established but lift movement is essentially non-deterministic

2 refinement in which we add lift doors
3 refinement in which we added floor doors
4 a refinement in which we add lift buttons
5 a refinement in which we add floor buttons

The first three layers were completed in lectures

The remaining two layers were given as an assignment.



Outline

Searching for a model

At the time the students were working on producing their Event B
model of their eBay system, I introduced a model of a lift control
system into COMP2111 to demonstrate the layering approach on a
non-trivial example.

The lift control system model consists of a the following:

1 basic lift system in which the rules for lift movement are
established but lift movement is essentially non-deterministic

2 refinement in which we add lift doors
3 refinement in which we added floor doors
4 a refinement in which we add lift buttons
5 a refinement in which we add floor buttons

The first three layers were completed in lectures

The remaining two layers were given as an assignment.



Outline

Searching for a model

At the time the students were working on producing their Event B
model of their eBay system, I introduced a model of a lift control
system into COMP2111 to demonstrate the layering approach on a
non-trivial example.

The lift control system model consists of a the following:

1 basic lift system in which the rules for lift movement are
established but lift movement is essentially non-deterministic

2 refinement in which we add lift doors
3 refinement in which we added floor doors
4 a refinement in which we add lift buttons
5 a refinement in which we add floor buttons

The first three layers were completed in lectures

The remaining two layers were given as an assignment.



Outline

Searching for a model

At the time the students were working on producing their Event B
model of their eBay system, I introduced a model of a lift control
system into COMP2111 to demonstrate the layering approach on a
non-trivial example.

The lift control system model consists of a the following:

1 basic lift system in which the rules for lift movement are
established but lift movement is essentially non-deterministic

2 refinement in which we add lift doors
3 refinement in which we added floor doors
4 a refinement in which we add lift buttons
5 a refinement in which we add floor buttons

The first three layers were completed in lectures

The remaining two layers were given as an assignment.



Outline

Searching for a model

At the time the students were working on producing their Event B
model of their eBay system, I introduced a model of a lift control
system into COMP2111 to demonstrate the layering approach on a
non-trivial example.

The lift control system model consists of a the following:

1 basic lift system in which the rules for lift movement are
established but lift movement is essentially non-deterministic

2 refinement in which we add lift doors
3 refinement in which we added floor doors
4 a refinement in which we add lift buttons
5 a refinement in which we add floor buttons

The first three layers were completed in lectures

The remaining two layers were given as an assignment.



Outline

Searching for a model

At the time the students were working on producing their Event B
model of their eBay system, I introduced a model of a lift control
system into COMP2111 to demonstrate the layering approach on a
non-trivial example.

The lift control system model consists of a the following:

1 basic lift system in which the rules for lift movement are
established but lift movement is essentially non-deterministic

2 refinement in which we add lift doors
3 refinement in which we added floor doors
4 a refinement in which we add lift buttons
5 a refinement in which we add floor buttons

The first three layers were completed in lectures

The remaining two layers were given as an assignment.



Outline

Searching for a model

At the time the students were working on producing their Event B
model of their eBay system, I introduced a model of a lift control
system into COMP2111 to demonstrate the layering approach on a
non-trivial example.

The lift control system model consists of a the following:

1 basic lift system in which the rules for lift movement are
established but lift movement is essentially non-deterministic

2 refinement in which we add lift doors
3 refinement in which we added floor doors
4 a refinement in which we add lift buttons
5 a refinement in which we add floor buttons

The first three layers were completed in lectures

The remaining two layers were given as an assignment.



Outline

Searching for a model

At the time the students were working on producing their Event B
model of their eBay system, I introduced a model of a lift control
system into COMP2111 to demonstrate the layering approach on a
non-trivial example.

The lift control system model consists of a the following:

1 basic lift system in which the rules for lift movement are
established but lift movement is essentially non-deterministic

2 refinement in which we add lift doors
3 refinement in which we added floor doors
4 a refinement in which we add lift buttons
5 a refinement in which we add floor buttons

The first three layers were completed in lectures

The remaining two layers were given as an assignment.



Outline

Learning to Love Nondeterminism

Students probably started the courses thinking that nondeterminism
was some obscure, esoteric concept.

They hopefully ended the course understanding that nondeterminism
is real and it exists in many systems that they would not have thought
of as nondeterministic.



Outline

Learning to Love Nondeterminism

Students probably started the courses thinking that nondeterminism
was some obscure, esoteric concept.

They hopefully ended the course understanding that nondeterminism
is real and it exists in many systems that they would not have thought
of as nondeterministic.



Outline

Implementing the model

An implementation of a model depends on the context of the system
being modelled, so there can be no general implementation strategy
for Event B models.

For the implementation of the eBay model —as for the
implementation of the iTunes model last year— the following strategy
will be followed:

1 the machines will be mapped onto OO classes;
2 the guards of the top-level events will be moved into a GUI to

give a set of “buttons” that represent the events, to which the
guards were attached. The buttons may be dimmed if the
corresponding events are not currently enabled

This seems an appropriate implementation strategy for this type of
model.

We will look seriously at the use of Scala (Martin Odersky, Lex
Spoon, Bill Venners) for implementation of Event B.



Outline

Implementing the model

An implementation of a model depends on the context of the system
being modelled, so there can be no general implementation strategy
for Event B models.

For the implementation of the eBay model —as for the
implementation of the iTunes model last year— the following strategy
will be followed:

1 the machines will be mapped onto OO classes;
2 the guards of the top-level events will be moved into a GUI to

give a set of “buttons” that represent the events, to which the
guards were attached. The buttons may be dimmed if the
corresponding events are not currently enabled

This seems an appropriate implementation strategy for this type of
model.

We will look seriously at the use of Scala (Martin Odersky, Lex
Spoon, Bill Venners) for implementation of Event B.



Outline

Implementing the model

An implementation of a model depends on the context of the system
being modelled, so there can be no general implementation strategy
for Event B models.

For the implementation of the eBay model —as for the
implementation of the iTunes model last year— the following strategy
will be followed:

1 the machines will be mapped onto OO classes;
2 the guards of the top-level events will be moved into a GUI to

give a set of “buttons” that represent the events, to which the
guards were attached. The buttons may be dimmed if the
corresponding events are not currently enabled

This seems an appropriate implementation strategy for this type of
model.

We will look seriously at the use of Scala (Martin Odersky, Lex
Spoon, Bill Venners) for implementation of Event B.



Outline

Implementing the model

An implementation of a model depends on the context of the system
being modelled, so there can be no general implementation strategy
for Event B models.

For the implementation of the eBay model —as for the
implementation of the iTunes model last year— the following strategy
will be followed:

1 the machines will be mapped onto OO classes;
2 the guards of the top-level events will be moved into a GUI to

give a set of “buttons” that represent the events, to which the
guards were attached. The buttons may be dimmed if the
corresponding events are not currently enabled

This seems an appropriate implementation strategy for this type of
model.

We will look seriously at the use of Scala (Martin Odersky, Lex
Spoon, Bill Venners) for implementation of Event B.



Outline

Implementing the model

An implementation of a model depends on the context of the system
being modelled, so there can be no general implementation strategy
for Event B models.

For the implementation of the eBay model —as for the
implementation of the iTunes model last year— the following strategy
will be followed:

1 the machines will be mapped onto OO classes;
2 the guards of the top-level events will be moved into a GUI to

give a set of “buttons” that represent the events, to which the
guards were attached. The buttons may be dimmed if the
corresponding events are not currently enabled

This seems an appropriate implementation strategy for this type of
model.

We will look seriously at the use of Scala (Martin Odersky, Lex
Spoon, Bill Venners) for implementation of Event B.



Outline

Implementing the model

An implementation of a model depends on the context of the system
being modelled, so there can be no general implementation strategy
for Event B models.

For the implementation of the eBay model —as for the
implementation of the iTunes model last year— the following strategy
will be followed:

1 the machines will be mapped onto OO classes;
2 the guards of the top-level events will be moved into a GUI to

give a set of “buttons” that represent the events, to which the
guards were attached. The buttons may be dimmed if the
corresponding events are not currently enabled

This seems an appropriate implementation strategy for this type of
model.

We will look seriously at the use of Scala (Martin Odersky, Lex
Spoon, Bill Venners) for implementation of Event B.



Outline

Acknowledgements

I would like to acknowledge

Deploy through Michael Butler for the invitation to attend this
workshop
Jean-Raymond Abrial, Laurent Voisin, for conversations and
assistance in learning to use Rodin.
Christophe Metayer for his brilliant work on AnimB
Peter Ho for enabling me to assist students with modelling their
systems using Event B. Peter runs that particular software
engineering workshop course.



Outline

Acknowledgements

I would like to acknowledge

Deploy through Michael Butler for the invitation to attend this
workshop
Jean-Raymond Abrial, Laurent Voisin, for conversations and
assistance in learning to use Rodin.
Christophe Metayer for his brilliant work on AnimB
Peter Ho for enabling me to assist students with modelling their
systems using Event B. Peter runs that particular software
engineering workshop course.



Outline

Acknowledgements

I would like to acknowledge

Deploy through Michael Butler for the invitation to attend this
workshop
Jean-Raymond Abrial, Laurent Voisin, for conversations and
assistance in learning to use Rodin.
Christophe Metayer for his brilliant work on AnimB
Peter Ho for enabling me to assist students with modelling their
systems using Event B. Peter runs that particular software
engineering workshop course.



Outline

Acknowledgements

I would like to acknowledge

Deploy through Michael Butler for the invitation to attend this
workshop
Jean-Raymond Abrial, Laurent Voisin, for conversations and
assistance in learning to use Rodin.
Christophe Metayer for his brilliant work on AnimB
Peter Ho for enabling me to assist students with modelling their
systems using Event B. Peter runs that particular software
engineering workshop course.



Outline

Answers to Questions I

The following are answers to questions raised during and after the
talk.

1 Lift system: do we allow students to change the machines/events
already defined? The only changes we expect are those
consistent with refinement.

2 Requirements in workshop: Do we deal with requirements? Yes,
the main presentation doesn’t say this, but have a set of
requirements consisting of some basic set and extended by their
own requirements. Throughout the project they are required to
maintain tracing of requirements in both directions. This we
regard as critically important as otherwise the EventB model is
essentially useless. The requirements are hand-coded, but a
plugin would be very nice.



Outline

Answers to Questions II

3 “Top-level” events in implementation This term was intended to
indicate events before refinement. They could be first specified at
various levels of the refinement. Such an event could, through
refinement, have many different incarnations each with their
mutually exclusive set of guards.

4 Model critique: the first exercise in the second of the two
workshops is for students to view all the models produced by all
teams and then to take 3 models plus their own and write a
critical evaluation of those 4 models. An outcome of that exercise
is for the team to possibly revise their model, adopting ideas from
the models of other teams.

5 Copying in workshop Copying in the workshop is not a problem.
Quite apart from the fact that students are encouraged to adopt
ideas from other teams’ models, in general the teams are very
secretive about their ideas. They are very competitive.



Outline

Answers to Questions III

6 Team size Our experience is that 4 is the best team size: 3 is a
bit too small and 5 allows one student to coast on the efforts of
other members of the team.

7 Programming vs design, logic etc While many students are good
at programming that is not to say that they find it easy. They
certainly find the active use of logic challenging. They’ve all
taken a course in discrete math that is largely aimed at students
in our computing programs.

8 Discharging POs While discharging POs is not easy students
seem to like rising to the challenge, and some of them get very
good at it. On assignments I give the PO statistics on my solution
to the assignment. This acts as a reasonable guide, especially to
the question of whether their invariant is too weak.



Outline

Answers to Questions IV

9 Assessment Assessment for COMP2111 consists of
assignments; a multiple choice/multiple correct answer exam and
a short answer exam. Assessment for SENG2020 consists of
presentations, reports and demonstration of their prototype.

10 Level of students The students in the above courses are second
year undergraduate students in a Software Engineering program.


	Outline

