
Modularisation Plugin

A. Iliasov

August 6, 2010

The Modularisation plugin provides facilities for structuring Event B devel-
opments into logical units of modelling, called modules. The module concept
is close to the notion Event B development (a refinement tree of Event B ma-
chines). However, unlike a conventional development, a module comes with
an interface. An interface defines the conditions on how a module may be in-
corporated into another development (that is, another module). The plugin
follows an approach where an interface is characterised by a list of operations
specifying the services provided by the module. An integration of a module
into a main development is accomplished by referring operations from Event B
machine actions using the procedure call metaphor [1].

While a specification realised as a single machine may describe fairly large
systems such an approach presents a number of limitations. The two structuring
mechanisms of a machine are the notions of variable, structuring an overall
system state, and the notion of event, structuring the behavioral part of a
specification. A sufficiently advanced model would normally correspond to a
machine with a substantial number of events and variables. This leads to the
scalability problems as the number of events and actions contained in them is
linearly proportional to the number of proof obligations.

Another point worth considering is the requirement to a modeller to keep
the track of all the details contained in a large model, that is, the readability
problem. A large specification lacking any form of structuring is hard to com-
prehend and thus is also hard to develop. These problems are addressed by
structuring a specification into a set modules.

In our approach a system is made of a number of modules weaved together
so that they work on the same global problem. Being a self-contained piece of
specification, a module is reusable across a range of developments. A hypotheti-
cal library of modules could facilitate formal developments through the reuse of
ready third-party designs. To couple two modules one has to provide the means
for a module to benefit from the functionality of the another module. A mod-
ule interface describes a collection of externally accessible operations; interface
variables permit the observation of a module state by other modules.

More information on using the modularisation principles and the plugin
functionality can be found in [2, 3].

The talk will present the recent progress in the Modularisation method-
ological and tool support and report on the application of the Modularisation
mechanism in the development of the SSF AOCS case study [4, 5] - one of the
case studies offered by the Deploy project industrial partners. The talk will
conclude with a short tutorial session discussing some of the more challenging
issues such as writing import invariants and using the type instantiation feature.

1



References

[1] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi,
D. Ilic, and T. Latvala, “Supporting reuse in event b development: Mod-
ularisation approach,” in ASM, ser. Lecture Notes in Computer Science,
M. Frappier, U. Glässer, S. Khurshid, R. Laleau, and S. Reeves, Eds., vol.
5977. Springer, 2010, pp. 174–188.

[2] “Modularisation plugin wiki,” http://wiki.event-
b.org/index.php/Modularisation Plug-in.

[3] “Modularisation plugin tutorial,” http://deploy-
eprints.ecs.soton.ac.uk/227/.

[4] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi,
D. Ilic, and T. Latvala, “Developing mode-rich satellite software by refine-
ment in event b,” in FMICS’10, 2010.

[5] A. Iliasov, A. Romanovsky, E. Troubitsyna, L. Laibinis, K. Varpaaniemi,
P. Vaisanen, D. Ilic, and T. Latvala, “Verifying mode consistency for on-
board satellite software,” in Safecomp’10, 2010.

2


