Refinement Plans for Reasoned Modelling*

Maria Teresa Llano!, Andrew Ireland!, and Gudmund Grov?

! School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh, UK
{mt14,a.ireland}@hw.ac.uk
2 School of Informatics, University of Edinburgh, Edinburgh, UK
ggrov@inf.ed.ac.uk

We focus here on a layered style of formal modelling, where a design is developed as a
series of abstract models — level by level concrete details are progressively introduced via
provably correct refinement steps. There are two major approaches to achieving this style
of formal modelling:

e firstly, within the rule-based approach, a user is restricted to a provably correct set of
refinement steps — thereby ensuring the soundness of their development. An example of
this style of development is found in [9].

e secondly, within the posit-and-prove approach, a user is free to “posit” models, but they
are required to formally prove correctness of successive layers of abstraction. Examples
of posit-and-prove approaches are VDM [8], B [1] and Event-B [2].

Our aim is to enhance the posit-and-prove approach. Specifically, we have developed a
technique called refinement plans which automatically generates guidance for users within
posit-and-prove formal modelling. Like many approaches to design, whether informal [5]
or formal [3], our technique relies upon patterns. The novelty of our refinement plans is
that they combine modelling and reasoning patterns, enabling us to computationally exploit
the subtle interplay that exists between modelling and reasoning — what we call reasoned
modelling. Our refinement plans are heuristic in nature, and can be applied flexibly during
a development.

As mentioned above, a refinement plan combines both modelling and reasoning knowl-
edge. Specifically, a refinement plan is an integration of three complementary components:

refinement plan = refinement method + proof methods + critics

A refinement method describes a common pattern of refinement in terms of abstract and
concrete models, together with a gluing invariant pattern. For a given refinement pattern,
the associated reasoning patterns are represented in terms of proof methods, which we borrow
from proof planning [4]. We are particularly interested in situations where a development
breaks down, but which is close enough to a known pattern for our plans to provide user
guidance in terms of modelling decisions. To achieve this we use a critics style exception
handling mechanism, analogous to proof critics [6]. Currently a critic has access to proof
failures arising from the Rodin provers, and partial success in terms of the application of
refinement and proof methods.

The application of refinement plans is currently a two phase process. Firstly, an evaluation
of the occurrence of refinement methods with respect to a given refinement step is performed.
Secondly, the results of the evaluation phase are analysed as follows:

* Thanks go to Rob Pooley, Julian Gutierrez, Alan Bundy and members of the Mathematical
Reasoning Group at Edinburgh University for their feedback and encouragement with this work.
The research reported in this paper is supported by EPSRC grants EP/F037058, EP/H024204,
EP/E005713, EP/E035329 and BAE Systems.



2 Llano, Ireland, and Grov

e where a complete match to a refinement method is found, and there are no unproven
POs, then an instance of the refinement method has been identified.

e where a partial match of a refinement method is found and/or where there are unproven
POs, then the associated critics are applied in order to generate guidance as to how the
given refinement can be aligned with the plan.

Note that while the failure analysis and guidance generation is automatic, the decision
as to whether or not the guidance is actually applied is left to the user. Note also that the
use of proof methods, and the analysis of partial success at the level of proof planning within
our refinement plans represents future work.

Below we highlight a variety of scenarios where we envisage refinement plans playing a
role within formal modelling:

correcting refinements: a flawed refinement step may be overcome by modifications to
the abstract and/or concrete models, e.g. guard strengthening, invariant discovery.

layering refinements: an overly complex refinement step can give rise to unproven proof
obligations — such failures may be overcome by the introduction of intermediate layers
of abstraction.

abstracting refinements: a development which starts at too concrete a level may ben-
efit from guidance as to how to reduce the initial complexity and open up alternative
modelling choices.

suggesting refinements: at the fringe of a development, suggesting alternative refinement
steps could be beneficial to a users productivity.

increasing proof automation: our refinement plans will enable us to exploit the corre-
sponds between the structure of a refinement and the pattern of proof associated with
its verification.

While the ideas that underpin reasoned modelling are generic with respect to posit-and-
prove, our initial focus has been on their application within Event-B. Specifically we have
implemented refinement plans that demonstrate the value of the first two scenarios high-
lighted above in a tool called REMO, a prototype Rodin plug-in [7].

References

1. J.-R. Abrial. The B-Book - Assigning Programs to Meanings. Cambridge University Press,
Aug. 1996.

2. J.-R. Abrial. Modelling in Event-B: System and Software Engineering. Cambridge University
Press, 2010.

3. J.-R. Abrial and T. S. Hoang. Using Design Patterns in Formal Methods: an Event-B Approach.
In Theoretical Aspects of Computing - ICTAC 2008, 5th International Colloquium, Istanbul,
Turkey, September 1-8, 2008. Proceedings, volume 5160 of Lecture Notes in Computer Science,
pages 1-2. Springer, 2008.

4. A. Bundy. A science of reasoning. In Computational Logic: Essays in Honor of Alan Robinson,
pages 178-198. MIT Press, 1991.

5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

6. A. Ireland. The use of planning critics in mechanizing inductive proofs. In LPAR, volume 624
of Lecture Notes in Computer Science, pages 178-189. Springer, 1992.

7. A.Ireland, G. Grov, M. Llano, and M. Butler. Reasoned modelling critics: Turning failed proofs
into modelling guidance. Heriot-Watt University. Technical report HW-MACS-TR-0078, 2010.
Submitted to the Journal of Science of Computer Programming.

8. C. B. Jones. Systematic Software Development using VDM (second edition). Prentice Hall,
1990.

9. C. Morgan. Programming from Specifications. Prentice—Hall, 1990.



