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1 Introduction

Formal methods have been successfully used for the development of safety-critical systems; however, the need
for skilled knowledge when writing formal models and reasoning about them represents a major barrier in
the adoption of formal methodologies for the development of non-critical applications. A key aspect in the
verification of formal models and in the development of reliable systems is the identification of invariants.
However, finding correct and meaningful invariants for a model represents a significant challenge. We have
used automated theory formation (ATF) techniques to automatically discover invariants of Event-B models.
In particular, we use Colton’s HR system [2] to explore the domain of Event-B models and suggest potential
invariants.

2 Automated theory formation with HR

HR [2] performs descriptive induction to form a theory about a set of objects of interest which are described by a
set of background concepts. The theories HR produces contain concepts that relate the objects of interest, and
conjectures that relate the concepts. HR builds new concepts from old ones using a set of 15 generic production
rules, including the negate rule that finds the complement of a concept and the split rule that extracts the
list of examples of a concept which share a given value. For each new concept formed, HR calculates the set
of examples which have the properties described by the new concept definition. Using these examples, the
definition, and information about how the concept was constructed and how it compares to other concepts,
HR estimates how interesting the concept is via a weighted set of interestingness measures, and this drives a
heuristic search. As it constructs concepts, it looks for empirical relationships between them, and formulates
conjectures whenever such a relationship is found. In particular, HR forms equivalence conjectures whenever it
finds two concepts with exactly the same examples, implication conjectures whenever it finds a concept with a
proper subset of the examples of another, and non-existence conjectures whenever a new concept has an empty
set of examples.

3 Discovering invariants of Event-B models

The first step in the analysis of candidate invariants of Event-B models is the generation of a domain file
that provides HR with background knowledge about the system being modelled. In the context of Event-B,
sets, constants, variables and events represent concepts of the domain while the list of examples for each of
these concepts is given through the generation of animation traces. We use the ProB animator [4] to animate
Event-B models. Each step of a trace represents the state of the system at a particular time point. A step can
be a good or a bad state, representing desirable or undesirable behaviour: these are represented as concepts
in HR and used to identify general conjectures that may be invariants of the system. States form the objects
of interest in the theory, i.e., we are interested in concepts and conjectures that are associated with states. A
conjecture is considered as a candidate invariant if either it applies to all states, or it applies only to all good
or all bad states. Concepts can be considered as invariants, or part of an invariant, if they represent properties
which remain unchanged in the domain: this is captured by HR’s interestingness measure variety.

3.1 Illustrative example
In this example we study a fragment of Abrial’s cars on a bridge model [1]. The model consists of an island
connected to the mainland by a bridge. The bridge has one lane; meaning that cars can travel only in one
direction. HR forms the conjecture that represents this invariant as follows:
1. An animation trace with 9 steps is generated through ProB. Each step represents a state (s00 - s08).
2. For each state, we supply HR with the concepts of cars going to the island (cti) and cars going to the
mainland (ctm). The data tables of these concepts are shown in figure 1(a) (where A is the state and B is the
number of cars).
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3. The split production rule is applied to extract the states for which the number of cars is 0. The data tables
obtained are shown in figure 1(b).
4. HR then applies the negate rule to both concepts, producing the concept of the states for which the number
of cars is different from 0. The resulting data tables are shown in figure 1(c).

cti(A,B)
s00 0
s01 1
s02 2
s03 1
s04 0
s05 0
s06 0
s07 0
s08 0

ctm(A,B)
s00 0
s01 0
s02 0
s03 0
s04 0
s05 1
s06 2
s07 1
s08 0

(a) Core concepts

cti(A,0)
s00
s04
s05
s06
s07
s08

ctm(A,0)
s00
s01
s02
s03
s04
s08

(b) Split production rule

¬cti(A,0)
s01
s02
s03

¬ctm(A,0)
s05
s06
s07

(c) Negate production rule

Figure 1: Theory formation steps.

5. Finally, HR finds that the concept ¬cti(A, 0) is subsumed by the concept ctm(A, 0), and the concept
¬ctm(A, 0) is subsumed by cti(A, 0), and thus, forms two (logically equivalent) implication conjectures which
state that cars can travel only in one direction:

conj1: ∀A.(state(A) ∧ ¬cti(A, 0)) ⇒ ctm(A, 0)
conj2: ∀A.(state(A) ∧ ¬ctm(A, 0)) ⇒ cti(A, 0)

3.2 Further examples
A second example is that of a vending machine. As in the previous example, the objects of interest are states,
which take various values, such as the amount of stock or money currently in the machine (these are called
stock and machineMoney respectively). States were labelled good or bad and given to HR so that it may
develop a theory. In particular, we labelled any states with a negative amount of stock as bad states. After
a run of 1,000 theory formation steps, HR found the invariants that the amount of money in the machine is
always either zero or positive, and all good states always have a positive or zero amount of stock:

1. For all states S, machineMoney(S, M) → M ≥ 0, and
2. For all states S, good(S) ∧ stock(S, A) → A ≥ 0.

In a separate run, we represented products of the vending machine in terms of sets labelled available, limited
and soldout. HR found that a product cannot be in two sets at the same time: that is, available∩ limited = ∅,
available ∩ soldout = ∅ and limited ∩ soldout = ∅. It also found the invariant that the initial amount of
stock multiplied by the value of an accepted coin is equal to the amount of money in the machine plus stock
multiplied by the value of an accepted coin.

4 Future Work and Conclusions

This is the first time that ATF has been used to reason over Event-B models. While these results are preliminary
and based on small examples, we believe that they will scale up over larger models and provide a useful way
of automatically reasoning about the models. We are now developing this work in various directions; including
scaling up, further automation between stages, and exploring how to generate gluing invariants. Furthermore
we expect to introduce a flexibility based on human reasoning, by applying Lakatos’s philosophical theory of
reasoning [3] to the verification of user-given invariants. Lakatos’s theory is based on how mathematicians use
counterexamples to trigger concept and conjecture development: in [5] we detail ways in which we expect to
use these techniques to repair faulty invariants as well as providing a way of analysing failed proof obligations.
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