
AI4FM Rippling Experiment Help! Summary

A (very) small experiment in Event-B rippling

Gudmund Grov, Alan Bundy & Lucas Dixon

Rodin Workshop, Dusseldorf 2010



AI4FM Rippling Experiment Help! Summary

Talk outline

I “Abrial’s MMPE rule” : n ∗ x/100 ∗ f ∗ p ∗ 20
I 100, 000 loc  3-12 Man Months of Proof Effort

I BUT, ∃ families of Event-B UPOs based on proof strategy
I AI4FM tries to explore such families to increase automation.

I This requires high-level proof strategies
I rippling is an example of a high level proof strategy
I implemented in Isaplanner.

I In this talk we will:
I give an overview of the AI4FM project
I describe a simple Event-B experiments with rippling/Isaplanner
I beg for help!



AI4FM Rippling Experiment Help! Summary

AI4FM overview

I The user manually proves one exemplar proof.

I The theorem prover uses the additional information from the
exemplar proof to discharge “similar” proofs:



AI4FM Rippling Experiment Help! Summary

The project

I 4 years UK EPSRC funding – started 1 April 2010
I EP/H024050/1, EP/H024204/1 and EP/H023852/1.

I The team
I Newcastle

I Cliff Jones, Leo Freitas, Andrius Velykis

I Edinburgh
I Alan Bundy, Gudmund Grov, Yuhui Lin

I Heriot-Watt
I Andrew Ireland

I Southampton
I Michael Butler.



AI4FM Rippling Experiment Help! Summary

Nature of Event-B POs/proofs

I Rarely deep.
I we are not trying to prove real math theorems!

I Complexity reduced by layering abstractions.
I Lots of POs

I ... which can often be grouped into “(proof) families”.

I Lots of detail (on larger examples)



AI4FM Rippling Experiment Help! Summary

The AI4FM process

I (Somehow) classify POs into families.
I Require the expert user to prove 1 PO manually/interactively

I preferable the “simplest”.

I This extra information is used to discharge rest of families
I Requires abstracting proof into a higher-level strategy

I ... and we must design a strategy language to capture this.



AI4FM Rippling Experiment Help! Summary

Towards a strategy language

I The strategy language needs to be robust to cope with
changes.

I A strategy may describe a sequence of intermediate lemmas
that could be spawned:

prove lemmas L1, L2, · · · , Ln s.t. GOAL follows.
I Abstract over many “dimensions”

I data-structure, domain, etc.

I Include notions like generalisation and lemma discovery.

I Rippling provides evidence for a high-level strategy language.



AI4FM Rippling Experiment Help! Summary

Rippling (in a hurry)

I Proof plans: high-level description of proofs
I captures common patters of reasoning

I Rippling: a proof plan, which
I works when one of the givens can be embedded in the goal

(e.g inductive step cases)
I for example in an Event-B INV type PO:

com = ClsC(cl ; nm) ` com = ClsC( (cl C− {s 7→ (sze 7→ [])})
↑

; nm)

I annotations to guide rewriting (towards given)

I language of wave-fronts and skeletons

I (direction) guarantees termination



AI4FM Rippling Experiment Help! Summary

Rippling illustration (step case of t@(Y@Z ) = (t@Y )@Z )

Rewrite rules:

H#T
↑

@LV H#T@L
↑

(1)

X1#X2
↑

= Y1#Y2
↑
V X1 = Y1 ∧ X2 = Y2

↑
(2)

Rippling proof:

t @ (Y @ Z) = (t @ Y) @ Z IH

h#t
↑

@(Y@Z ) = ( h#t
↑

@Y )@Z apply (1) 2 times

h#t@(Y@Z )
↑

= h#(t@Y )
↑

@Z apply (1)

h#t@(Y@Z )
↑

= h#(t@Y )@Z
↑

apply (2)

h = h ∧ t@(Y@Z ) = (t@Y )@Z
↑

apply IH



AI4FM Rippling Experiment Help! Summary

IsaPlanner

I Isaplanner is a proof planner built on top of Isabelle
I enables use of existing Isabelle automation
I soundness ensured by Isabelle.

I Reasoning techniques which generates proof plans
I lazy search over possible ways to apply technique

I Implemented in the ML language
I language also used to write new reasoning techniques
I provides many ML functions to aid developing new techniques

I Rippling technique encoded (among others)



AI4FM Rippling Experiment Help! Summary

The experiment

I Goal is to check how rippling works in an Event-B setting

I Longer term we hope to see how easy it is to encode new
techniques/patterns in Isaplanner.

I Set representation in Isabelle/HOL used
I ... and slightly extended

I Modelled an example system in Rodin
I translated POs into Isabelle/HOL representation

I Addressed INV type POs



AI4FM Rippling Experiment Help! Summary

Representing Event-B POs in Isabelle/HOL

I Event-B POs (+ theory) must be represented in Isabelle/HOL

I Uses Isabelle/HOL’s set theory
I Extended with “Event-B operators”

I e.g. C, B, C−, B−, ...

I Functions as relations (HOL functions are total)
I →, 7→, 7�, ... defined
I function application uses definite description operator (i.e. ι)

I Proof rules (theorems) derived by need
I Drawbacks

I Most general type for functions
I little milage from HOL type checking

I WDs ignored
I Ignores Event-B proof rules



AI4FM Rippling Experiment Help! Summary

The system: a telephone system

I Based on Z model by Woodcock
I The variables

I call ∈ Subs 7→ (Status↔ Subs)
I connected ∈ Subs 7→ Subs
I st and num projections on (Status↔ Subs)
I Free ⊆ Subs

I Invariants

inv1 : Callers = dom((call ; st)B Connected)
inv2 : connected = Callers C (call ; num)

I where Connected ⊂ Status for ”connected calls”.



AI4FM Rippling Experiment Help! Summary

The system: a telephone system (events)

I Event’s to lift handle, dial, answer, etc..
I We will only discuss two events

I EVENT LiftFree =̂
ANY s WHERE s ∈ Free
THEN Free := Free\{s}

call(s) := (seize 7→ empty)
...

I EVENT LiftSuspended =̂
ANY s WHERE (s 7→ suspended) ∈ connected−1; call ; st
THEN call(connected−1(s)) := (speech 7→ s)

...



AI4FM Rippling Experiment Help! Summary

PO LiftFree/inv1/INV

I All required rewrite (wave) rules are existing
I Proof strategy

I Rippling followed by application of IH (inv1)
I Then manually discharge reminding (non-rippling) goals

I i.e. the conditions from conditional rewrite rules

I PO LiftFree/inv1/INV:

Callers = dom(call ; st B Connected), s ∈ Free `
Callers = dom((call C− {s 7→ (seize 7→ empty)}); st B Connected)

I (in one branch) gives the following two (provable) sub-goals

s /∈ dom(call) ((s 7→ (seize 7→ [])); st)B Connected = {}

I note there are also several (sometimes unprovable) branches



AI4FM Rippling Experiment Help! Summary

PO LiftFree/inv2/INV

I PO LiftFree/inv2/INV:

connected = Callers C (call ; num), s ∈ Free `
connected = Callers C ((call C− {s 7→ (seize 7→ empty)}); num)

I (in one branch) gives the following two (provable) sub-goals

s /∈ dom(call) (Callers C {(s 7→ (seize 7→ []))}; num) = {}

I The “idea” is similar to LiftFree/inv1/INV
I “ripple out” to “isolate” the new part – and show it is {}
I BUT the rules used, i.e. the proof, differs (e.g. B vs. C)
I AND one of the sub-goals is harder to prove



AI4FM Rippling Experiment Help! Summary

LiftSuspended POs

I PO LiftSuspended/inv1/INV

Callers = dom(call ; st B Connected),
(s 7→ suspended) ∈ connected−1; call ; st `
Callers = dom((call C− {connected−1(s) 7→ (speech 7→ s)}); st B Connected)

I PO LiftSuspended/inv2/INV

connected = Callers C (call ; num),
(s 7→ suspended) ∈ connected−1; call ; st `
connected = Callers C ((call C− connected−1(s) 7→ (speech 7→ s)); num)

I Previous approach: s was not in Callers, and is still not
I Here, the “dual” is true:

I connected−1(s) was in Callers and still is.

I Requires “theory” properties of num, st, call and connected



AI4FM Rippling Experiment Help! Summary

Some observations: difference with existing rippling work

I Hard to make any conclusions from a small case study

I Rippling seems promising for INV POs
I It manages to reduce the PO to a smaller, simpler goal –

however:
I much more conditional rewriting than other domains
I .. and WD (which will add further conditions) ignored
I not clear how to discharge these (non-rippling) goal

I Still lots of room for improvement:
I several branches – use counter-example finders to filter out

most obvious ones
I better use of existing techniques (simp, blast, etc)
I productive use of failure.



AI4FM Rippling Experiment Help! Summary

Productive use of failure

I One advantage of rippling is Ireland’s proof critics.
I Particular failures (or partial matches) of rippling triggers

certain “exception cases”
I e.g. a missing lemma is speculated, or the conjecture is

generalised.

I More robust than lower-level tactics.
I These could be applied in the Event-B setting

I but not clear how to prove discovered/generalised lemmas
I induction+rippling traditionally used
I ... this may not be the case in Event-B

I we may need to discover new proof strategies here
I ... or learn them from a given exemplar proof ...



AI4FM Rippling Experiment Help! Summary

Rippling experiment vs. AI4FM agenda

I AI4FM is about learning strategies from an exemplar proof

I Rippling is an existing strategy

I Maybe a general strategy for INV is to use rippling
I and the special purpose strategies learned from exemplar

proofs are used to
I discharge sub-goals from conditional rewrite rules in target

proofs
I .. and (internally) of source proof, use proof of one such

sub-goal to discharge other
I prove discovered lemmas.



AI4FM Rippling Experiment Help! Summary

The AI4FM plan

I Analyse a lot of
I POs

I preferably from real-world applications

I . . . their (expert-provided) proofs attempts
I and analysing “families”.

I Based on analysis, develop a strategy language
I more examples ⇒ more robustness
I thus, the need for examples!
I we expect an iterative development of the language.

I Provide tool support
I to extract a strategy out of an exemplar proof
I to interpret strategies to discharge “similar POs”.



AI4FM Rippling Experiment Help! Summary

We need your help (so we can help you)!

I We have experimented with our own little case-study.

I Steve Wright have already volunteered to participate!

I You can help by providing case-studies with (non-trivial) POs:

I ... industrial-sized preferably

I ideally, with (given) families of proofs

I even better with with proof history
(including dead-ends)

I the full proof process can tell us more
than the finished article

I Examples from difference sources will increase robustness

I ... which will (hopefully) give you better proof automation!



AI4FM Rippling Experiment Help! Summary

Summary

I AI4FM is a new project trying to learn and recycle proof
strategies.

I Rippling is a high-level proof strategy
I We have shown promising results when rippling Event-B POs

I a simple example
I user-interaction still required

I (Your?) relevant example(s) will be of great help!



AI4FM Rippling Experiment Help! Summary

Thank you!

http://www.ai4fm.org

http://www.ai4fm.org

	AI4FM
	

	Rippling
	

	Experiment
	

	Help!
	

	Summary
	


