
Context instantiation plug-in: a new approach to
genericity in Rodin*

Guillaume Verdier1, Laurent Voisin2

1 LMF/CentraleSupélec, Université Paris-Saclay
2 Systerel

June 8th, 2021
9th Rodin User and Developer Workshop

*This work is supported by the French ANR project Event-B Rodin Plus
(EBRP, ANR-19-CE25-0010).

1 / 10

Introduction

I the core Rodin platform has many features, but lacks
genericity/type parametricity

I how to define, prove and use generic mathematical theories or
data structures?
I implement specific instances (e.g., List Int) with

copy-and-paste... which is cumbersome and error-prone
I use the Theory plug-in, which introduces a new type of files, a

slightly different syntax, a deployment process, ...

I as part of the EBRP project, Jean-Raymond Abrial suggested
a new, lighter approach: the context instantiation plug-in
experiments it

2 / 10

Overview

Main idea: start from what people do by hand (“copy-and-paste
method”) and provide a plug-in to automate it in a safe way.

I reuse contexts
I use carrier sets and constants as generic parameters

I carrier sets: type parameters
I constants: value/expression parameters

I prove theorems about these abstract types and constants

I in other contexts, instantiate these generic theorems by
replacing carrier sets and constants with concrete types and
values

3 / 10

Generic contexts

“Generic” contexts are written as usual and do not need the
plug-in. For example:
context sequence
sets S
constants

seq
add
size

axioms
axm1: seq = {f 7→ n|n ∈ N ∧ f ∈ 1 .. n→ S}
axm2: add = (λx ·x ∈ S|(λf 7→ n·f 7→ n ∈ seq|f ∪ {n + 1 7→ x} 7→ n + 1))
theorem thm1: add ∈ S → (seq→ seq)
axm3: size = (λf 7→ n·f 7→ n ∈ seq|n)
theorem thm2: size ∈ seq→ N
theorem thm3: ∀x, f , n·x ∈ S ∧ (f 7→ n ∈ seq)⇒ size(add(x)(f 7→ n)) = size(f 7→ n) + 1

4 / 10

Instantiations

In the most basic setting, users can manually instantiate theorems
and describe the instantiation in the comment box: the plug-in
checks that the instantiation is valid.
Useful to check existing contexts:
context seqInt
constants

seq
add
size

axioms
@axm1: seq = {f 7→ n|n ∈ N ∧ f ∈ 1 .. n→ Z} // sequence|S:=Z|axm1
@axm2: add ∈ Z→ (seq→ seq) // sequence|S:=Z|thm1
@axm3: size ∈ seq→ N // sequence|S:=Z|thm2
@axm4: ∀x, f , n·x ∈ Z ∧ f 7→ n ∈ seq⇒ size(add(x)(f 7→ n)) = size(f 7→ n) + 1 // sequence|S:=Z|thm3

Syntax:

I @ before axiom label
I context | substitutions | theorem in comment

I substitutions: param1 := value1 ;; param2 := value2 ;; ...

5 / 10

Short demo

Let’s look at the previous example in Rodin:

Video demo: instantiation.mp4

6 / 10

Generation

For new developments, one can provide only the instantiation in the
comment box: the plug-in can generate the instantiated axiom:

Video demo: generation.mp4

7 / 10

Wizard

It is also possible to create instantiations through a wizard:

Video demo: wizard.mp4

8 / 10

Types and sets

In the sequence example, S is a carrier set, used for type
substitutions:

I S := Z or S := Z× Z are fine, for example

I S := N or S := Z 7→ Z are not: they are sets, not types

We can adapt the generic context to use constant substitution...

context sequence
sets S type
constants

S
...

axioms
axm1: S ⊆ S type
...

... and then instantiate with S type := Z ;; S := N, for example.

But the plug-in has type inference, so S := N is sufficient: authors
of generic contexts have to take care of it; users do not see it.

9 / 10

Conclusion

The context instantiation plug-in introduces a new approach to
genericity in Rodin that

I is tightly integrated in the core Rodin platform

I should be very simple to set-up and use

I can also check existing projects with duplicated code

It is currently in use by members of the EBRP project (see next
talks). It should be publicly available soon.

Questions?

10 / 10

