Domain knowledge as Ontology-based Event-B
Theories

I. Mendil', Y. Ait-Ameur!, N. K. Singh!, D. Méry?, and P. Palanque®

'INPT-ENSEEIHT /IRIT, University of Toulouse, France
2Telecom Nancy, LORIA, Université de Lorraine, France
3IRIT, Université de Toulouse, France
{ismail.mendil,yamine,nsingh}@enseeiht.fr, dominique.mery@loria.fr,
palanque@irit.fr

1 Context of the study

In general system engineering approaches, particularly formal methods, do not
offer specific constructs allowing the designer to define formal models of domain
knowledge, nor mechanisms allowing to import such existing models. However,
there exist formal modelling languages and /or meta-models sometimes standard-
ised [6] that support the formalisation of such domain knowledge.

In this paper, we show how Event-B theories [1,3,5] can be defined to for-
malise such domain knowledge and the Rodin Platform [2] is used to carry out
the formal development and the verification process. We first give a generic the-
ory defining an ontology modelling language and then show its instantiation
in the case of the ARINC 661 standard describing interactive cockpits as an
example of critical interactive systems.

This work has been achived in the context of the French national research
agency (ANR) project FORMEDICIS [7]' FORmal MEthods for the Develop-
ment and the englneering of Critical Interactive Systems

2 A theory for ontologies

Since we are interested in formalising the domain knowledge associated to critical
interactive interfaces and use the domain properties in our Event-B models, we
need a framework to express such knowledge.

In our case, domain knowledge is formalised using ontologies. Therefore, as a
first step, we have developed a generic theory allowing to describe ontologies. An
extract of this theory is given in Listing 1. Classes C, properties P and instances I
are defined as type parameters and a set of other relevant operators is provided.

OntologiesTheory entails several useful theorems thanks to the definition
of the operators. thml is an example, of a theorem establishing the transitivity
of the isA operator. Another example is thm2 which is trivial but has a great
benefit for discharging poof-obligations in Event-B models.

! https://anr.fr/Projet-ANR-16-CE25-0007



THEORY OntologiesTheory
TYPE PARAMETERS C, P, [
DATA TYPES Ontology (C,P,I)
COONSTRUCTORS consOntology (classes :P(C) ,properties :P(P) ,instances:P(I),
classProperties :P(CxP),classInstances :P(CxI),classAssociations :P(CxPxC)
, instanceAssociations:P(IxPxI))
OPERATORS
isWDInstancesAssociations <predicate> (o: Ontology (C, P, I)
getInstanceAssociations <ezpression> (o: Ontology (C, P, 1))
well—definedness isWDInstancesAssociations(o) ...
isWDOntology <predicate> (o: Ontology(C, P, I))
direct definition isWDClassProperites(o) A isWDClassInstances (o) A
isWDClassAssociations (o) A isWDInstancesAssociations (o)
isA <predicate>(o: Ontology(C, P, I),cl: C,c2: C)
well—definedness isWDOntology (o) ,ontologyContainsClasses (o, {cl, c2})
direct definition getlnstancesOfaClass(o,cl)CgetInstancesOfaClass(o,c2)
addInstancesToAClass <expression> (o: Ontology(C, P, I),c: C,ii: P(I))
well—definedness isWDOntology (o) ,ontologyContainsClasses (o, {c}),
ontologyContainsInstances (o, ii),- classContainsInstances (o, c, ii)
direct definition consOntology(getClasses (o), getProperties (o),
getInstances (o) ,getClassProperties (o) ,getClassInstances(o) U ({c} x ii),
getClassAssociations (o), getIlnstanceAssociations (o))
isVariableOfOntology <predicate> (o:Ontology (C,P,I),ipvs:P(IxPxI))
well—definedness isWDOntology (o)
direct definition ipvs C { il —» p — i2 | il € T A p € P A i2 € T A
il — p — i2 € instances(o) X properties(o) X instances(o) A
(3cl, ¢c2 - cl € CA c2 € CA {cl, c2} C getClasses(o) =
(cl—p—c2egetClassAssociations (o)ApegetClassProperties (o) [{cl}] A
ilegetClassInstances (o) [{cl}]Ai2€getClassInstances (o) [{c2}]))}
THEOREMS
thmi1: Yo, cl, c¢2, ¢3- o € Ontology(C, P, I) A isWDOntology(o) A ¢l € C A
c2 € CA c3 € CA ontologyContainsClasses (o, {cl, c2, c3})
= (isA(o, cl, c2) A isA(o, ¢2, ¢3) = isA(o, cl, ¢3))
thm2: Yo, csl, c¢s2 - o € Ontology(C, P, I) A isWDOntology(o) A ¢csl1 C C A
cs2 C C A csl # 0 A cs2 # 0 A ontologyContainsClasses (o, csl) A
ontologyContainsClasses (o, cs2)
= (ontologyContainsClasses (o,cslUcs2))

Listing 1: Ontology Modelling Language Data Type

3 The case of Arinc 661

ARINC 661 [4] defines a standard Cockpit Display System (CDS) interface in-
tended for all types of aircraft installations. The primary objective is to minimize
the cost to the airlines, directly or indirectly. It normalises the definition of cock-
pit display system (CDS) interface and the communication protocol with user
applications. In particular, its objective is to

— minimize the cost of acquiring new avionic systems to the extent it is driven
by the cost of CDS development;

— minimize the cost of adding new display function to the cockpit during the
life of an aircraft;

— minimize the cost of managing hardware obsolescence in an area of rapidly
evolving technology;

— introduce interactivity to the cockpit, thus providing a basis for airframe
manufacturers to standardize the Human Machine Interface (HMI) in the
cockpit.




he standard defines two external interfaces between the CDS and the aircraft
systems. The first is the interface between the avionics equipment (user systems)
and the display system graphics generators. The second is a means by which
symbology and its related behavior are defined.

3.1 ARINC 661 Concepts Declaration

We have considered the ARINC 661 specification document aiming to describe
specific case studies —weather radar system. We have identified a set of relevant
concepts, after a thorough analysis of the specification document. The formali-
sation of the ARINC 661 proceeds by instantiating OntologiesTheory, it yields
the Event-B theory ARINC661Theory in Listings 2, 3 and 4. Retained concepts
are often ARINC 661 widgets like Label, CheckButton, etc. However other ele-
ments are introduced for organisation purposes where the widgets may be used
like wellBuiltClassProperties and wellBuiltTtypesElements.

THHEORY ARINC661Theory

IMPORT THEORY PROJECTS OntologiesTheory

AXIOMATIC DEFINITIONS ARINC661Axiomatisation:

TYPES ARINC661Classes, ARINC66Properties, ARINC661Instances

OPERATORS

ARINC661 BOOL <ezpression> () : ARINC661Classes

A661 TRUE <ezxpression> () : ARINC661Instances

A661 FALSE <ezpression> () : ARINC661Instances

CheckButtonStateClass <expression> () : ARINC661Classes

Label <ezxzpression> () : ARINC661Classes

A661 EDIT BOX NUMERIC VALUES CLASS <ezpression> ()
ARINC661Classes - -

RadioBox <ezpression> () : ARINC661Classes

CheckButton <ezpression> () : ARINC661Classes

EditBoxNumeric <exzpression> () : ARINC661Classes

hasChildrenForRadioBox <exzpression> () : ARINC66Properties

hasCheckButtonState <exzpression> () : ARINC66Properties

hasValue <ezpression> () : ARINC66Properties

SELECTED <exzpression> () : ARINC661Instances

UNSELECTED <exzpression> () : ARINC661Instances

wellBuiltClassProperties<expression >() :P(ARINC661Classesx ARINC66Properties)

wellBuiltClassAssociations <exzpression> () : P(ARINC661Classes X
ARINC66Properties x ARINC661Classes)

wellbuilt TypesElements<expression > () :P(ARINC661Classesx ARINC661Instances)

isWDRadioBox <predicate> (o: Ontology (ARINC661Classes,
ARINC66Properties, ARINC661Instances) ) :

well—definedness isWDOntology (o)

isWDARINC6610ntology <predicate> (o: Ontology (ARINC661Classes,
ARINC66Properties, ARINC661Instances) ) :

consARINC6610ntology <expression> (ii: P(ARINC661Instances) ,

cii: P(ARINC661Classesx ARINC661Instances) ,

ipvs :P(ARINC661Instances X ARINC66Propertiesx ARINC661Instances)) :

Ontology (ARINC661Classes, ARINC66Properties, ARINC661Instances)

well—definedness isWDARINC6610ntology (consOntology (ARINC661Classes,

ARINC66Properties, ii , wellBuiltClassProperties ,wellbuiltTypesElementsUcii

,wellBuiltClassAssociations , ipvs))

isVariableOfARINC6610ntology <predicate> (o: Ontology (ARINC661Classes,

ARINC66Properties, ARINC661Instances) ,

ui: P(ARINC661Instances X ARINC66Properties x ARINC661Instances))

well—definedness isWDOntology (o)

Listing 2: ARINC 661 theory declarations




3.2 ARINC 661 Concepts Definition

Since ontology standards do not define explicitly operators (they rely on ad’hoc
APIs on their XML representation) to manipulate the concepts they describe,
we have defined a set of operators allowing to manipulate the concepts of the
ARINC661Theory. Moreover, the definition of the concepts are given in the shape
of axioms. In particular, the effective type parameters for ontology instanti-
ation are defined in ARINC661ClassesDef, ARINC661PropertiesDef and AR-
INC661InstancesDef. Also, consARINC6610ntology is provided for a valid con-
struction of operator under the condition —formalised as well-definedness condi-
tion—that the arguments are valid. In addition, isWDARINC6610ntology allows
the checking of the validity of a given ARINC 661 ontology.

AXIOMS
ARINCG661ClassesDef : partition (ARINC661Classes, {ARINC661 BOOL},
{ARINC661 STRING CLASS}, {Label},{RadioBox}, {CheckButton}, ...)

ARINCG66PropertiesDef : partition (ARINC66Properties, {hasVisible},
{hasEnable},{hasAnonymous},{hasChildrenForRadioBox}, ...)
ARINCG661InstancesDef: partition (ARINC661Instances, {A661 TRUE},
{A661 FALSE},{A661 TRUE WITH VALIDATION}, Labellnstances ,
wellBuilt ClassProperties :
wellBuiltClassProperties = ({Label} x {hasVisible ,...}) 6]
({RadioBox} x {hasWidgetType, hasParentIdent, hasVisible, ...}
({ CheckButton}x{hasWidgetType, hasVisible ,hasEnable, ...})U ...
consARINC6610ntology: Vii, cii, ipvs - ii € P(ARINC661Instances) A
cii € P(ARINC661Classes x ARINC661Instances) A
ipvs € P(ARINC661InstancesXx ARINC66Properties x ARINC661Instances) A
wellbuiltTypesElements N cii = @ A ii C WidgetsInstances
= consARINC6610ntology (ii, cii, ipvs) =
consOntology (ARINC661Classes, ARINC66Properties, ii,
wellBuiltClassProperties , wellbuiltTypesElements U cii ,
wellBuiltClassAssociations , ipvs))
is WDEditBoxNumeric :
Vo-0€ Ontology (ARINC661Classes , ARINC66Properties, ARINC661Instances)=>
(isWDRadioBox (0)< ((Ved ,v-ed—hasValue—veEgetInstanceAssociations (o)
=v € A661_EDIT BOX NUMERIC ADMISSIBLE VALUES) )
isWDARINC6610ntology :
Vo- o € Ontology (ARINC661Classes, ARINC66Properties, ARINC661Instances)
= (isWDOntology (o) AisWDRadioBox (0) AisWDEditBoxNumeric (o) =
isWDARINC6610ntology (o))

——

Listing 3: ARINC 661 theory definitions

3.3 ARINC 661 theory Theorems

Last, the most important part concerns the properties embedded in the theory
in the form of theorems. They are particularly useful to formalise standard re-
quirements. Moreover, the validation of the fact that the ontology has the right
structure is done through the theorems thm1 and thm2. There are two important
properties ensuring that the structure of the ontology is valid: the classes are
related to properties already defined and similarly that the class associations
component encompasses only the provided classes and properties. The theorem
proofs are discharged thanks to the definition of wellBuiltClassProperties,
wellBuiltClassAssociations and wellBuiltTypesElements




THEOREMS

thm1: Vii, cii, ipvs -

ii € P(ARINC661Instances) A cii € P(ARINC661Classesx ARINC661Instances)A
ipvs € P(ARINCG661Instances X ARINC66Properties x ARINC661lInstances) A

wellbuiltTypesElements N cii = 0 A ii C WidgetsInstances
= isWDClassProperites (consARINC6610ntology (ii , cii, ipvs))
thm2: Vii, cii, ipvs -

ii € P(ARINC661Instances) A cii€ P(ARINC661Classesx ARINC661Instances) A
ipvs € P(ARINC661Instancesx ARINC66Propertiesx ARINC661Instances) A
wellbuiltTypesElements N cii = 0 A ii C WidgetsInstances

= isWDClassAssociations (consARINC661O0ntology (ii , cii, ipvs))
END

Listing 4: ARINC 661 theory theorems

4 Conclusion

This approach shows that axiomatising domain knowledge as ontologies ex-
pressed in Event-B theories is a suitable solution to handle standard requirements
in system design. The defined theory for ARINC 661 standard specification has
been used to develop Event-B models for several case studies like WXR user
interface and TCAS application. We have used the defined data types to type
state variables. Axioms and theorems have been used to prove specific properties
on these case studies. The ontology description theory is presented as playing
a the role of scaffolding for producing a domain-specific theories thanks to the
Event-B theories featuring type genericity.

Due to the complexity of the theories developed for the aforementioned ob-
jective, we reported a serious bug to the development team of Plug-in Theory
which was fixed and integrated in a future release. All Event-B developments
are available and interested reader may contact the first author for a copy.

References

1. Abrial, J.R.: Modeling in Event-B: system and software engineering. Cambridge
University Press (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
An open toolset for modelling and reasoning in event-b 12(6) (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Leuschel, M., Schmalz, M., Voisin, L.:
Proposals for mathematical extensions for Event-B. Tech. Rep. (2009)

4. ARINC: Arinc 661 specification: Cockpit display system interfaces to user systems,
prepared by aeec, published by sae, 16701 melford blvd., suite 120, bowie, maryland
20715 usa (June 2019)

5. Butler, M., Maamria, I.: Mathematical extension in Event-B through the rodin
theory component (2010)

6. Calegari, D., Mossakowski, T., Szasz, N.: Heterogeneous verification in the context
of model driven engineering. Science of Computer Programming, Elsevier Journal.
126, 3-30 (2016)

7. Formedicis, https://anr.fr/Projet-ANR-16-CE25-0007




