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Chapter 1

Book Layout and Guide

This book contains Event-B examples designed to be used with the Rodin toolkit [8] The source text
for the models is embedded in the book text, for example:

machine CoffeeClub

variables
piggybank This machine state is represented by the variable, piggybank , denoting a sup-

ply of money for the coffee club.

invariants
inv1: piggybank ∈ N piggybank must be a natural number

end CoffeeClub
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Chapter 2

System Modelling and Design

This book is concerned with the verification of system design using system modelling.

The modelling will be carried out in a rigorous way that allows us to quantitatively explore
the proposed behaviour of a design.

It is important to understand that in order to explore a design we will be concerned with
what happens, when it happens and what changes of state are associated with an event.

Generally, designs will be presented through many layers of abstraction called refinements.
Refinements allow us to introduce more details of the design and to expose new levels of a
system with extra functionality.

2.1 Software Engineering, not Programming

While the modelling we will discuss is not restricted to software systems, there will be some parts of
systems that will be implemented as software. We are concerned to emphasise an engineering approach
to system design in general and to software system design in particular, in contrast to the more com-
mon code and test approach. Due to the discrete nature of digital computers, testing of software can
be particularly weak due to the lack of ability to interpolate or extrapolate on test results. Traditional
engineering disciplines generally work in continuous domains that allow interpolation, and maybe ex-
trapolation. In civil engineering, for example, it will generally be the case that a beam that does not
fail under a 100 tonne load will not fail under a 50 tonne load. There is no similar expectation for
software. This is not an argument against testing, it is an argument against non-rigorous verification.

It’s also worth noting that software is intrinsically unstable in the following sense. The physical imple-
mentation of a conventional engineering design can never be exact: components of a civil engineering
structure or an electrical engineering device will never be precisely as specified in the design. What then
generally happens is that the structure will distort slightly and reach a stable equilibrium configuration.
As the reader with any software experience will be well aware, software —generally— does not behave
in that way: if part of a software implementation is not exact then the software will most probably
collapse. That is, it is unstable. Hence, near enough is never good enough. Note: any error recovery
strategy must be explicitly added to the software; it is not provided automatically by the environment.

Engineering design should be rigorous, and given the above observations it would seem that this es-
pecially needs to be the case for software design. Ironically this is often —perhaps usually— not the
case.

The approach adopted in this book will emphasise rigorous design, meaning that a design will be
subjected to a rigorous, mathematical quantification of the required behaviour of a system and efforts
will be made to ensure that the design does satisfy the requirements.

3



4 CHAPTER 2. SYSTEM MODELLING AND DESIGN

2.2 Mathematics, not Magic

We will be using mathematics, as is perfectly normal for other engineering disciplines. Because of the
discrete nature of the descriptions that we need to represent we will be using set theory and logic and
verification will involve the use of proof. To assist with proof we will use theorem provers. In many
areas this type of design has been referred to as formal methods. We will not use that term; we prefer
simply mathematics. In particular we wish to avoid any suggestion that proof equals correct, or even
more extreme that because our designs have been proved they can never fail. We recognise that any
engineering design can fail, however the designer should be aware of the conditions under which it may
fail.

Requirements need to be interpreted and then quantified in order to be able to reason about the
realisation of the requirements. For any system, our objective will be to give a rigorous statement of
our assumptions and rigorous arguments that our design satisfies the requirements for the system.

2.3 Background and Timeline

The following is an abbreviated timeline of important contributions to the understanding of computer
programs.

1960 John Backus & Peter Naur [5], Backus-Naur Form (BNF) for specifying syntax

1967 Robert Floyd [9], Assigning Meanings to Programs

1969 CAR Hoare [12], An Axiomatice Basis for Computer Programming

1976 Edsgar Dijkstra [6], correct by construction

1980 Cliff Jones [13, 14], VDM

1983 Niklaus Wirth [24], stepwise refinement

1987 Ralph Back [3, 4], A calculus of refinement for program for program derivation

1987 Ian Hayes [11], Z case studies

1990 Carroll Morgan [15], Specification statement

1996 Jean-Raymond Abrial [1], Classical B: Assignment Programs to Meanings

1989 Michael Spivey [17, 18], Z

2010 Jean-Raymond Abrial [2], System and Software Engineering



Chapter 3

Contexts, Machines, State, Events, Proof and
Refinement

This chapter will explore a very simple model in order to gain some familiarity with modelling
using Event-B.
The model is intended to be very elementary, but it will introduce many aspects of modelling
in Event-B including a very simple —and probably unexpected— instance of refinement.
This will throw into relief one basic aspect of refinement.
The basic concepts of Event-B will be introduced in this chapter, and the reader is encour-
aged to install Rodin —the Event-B toolkit, see [8]— and copy the model developed in this
chapter, as your first exercise.
Models in Event-B are described in terms of contexts and machines
Contexts define constants that are either numeric or sets Within a context, constants are
declared and their properties and relationships are defined by axioms and theorems. Axioms
describe properties that cannot be derived from other axioms. Theorems describe properties
that are expected to be able to be derived from the axioms.
Machines: define dynamic behaviour. A machine may see one or more contexts and have
a state and events. The state is represented by variables, whose types and behaviour are
defined by invariants and theorems Events model “things that may happen” in the context
of the machine. An event is represented by parameters, which are simply symbolic names
for values; guards, which express the conditions of the state and parameters under which
the event may fire; and actions, which describe the change of state that occurs when the
event does fire.

3.1 Machines

It is important to understand that machines should not be thought of as software programs —although
they might be implemented by software. The machine models a state and the events representing
behaviour that could occur; the conditions that must apply if an event occurs; and the effect the event
has on the state. As such, a machine gives a representation of possible behaviours of some system.

CoffeeClub

The elementary description of machines will be illustrated with a simple running example of a coffee
club. We will introduce a machine that will be used to model some of the desired facilities of the coffee

5



6 CHAPTER 3. CONTEXTS, MACHINES, STATE, EVENTS, PROOF AND REFINEMENT

club.

machine CoffeeClub

variables
piggybank This machine state is represented by the variable, piggybank , denoting a sup-

ply of money for the coffee club.

invariants
inv1: piggybank ∈ N piggybank must be a natural number

The invariants specify the properties that the variables (the state) must satisfy before and after every
event, excepting the initialisation where the invariants must be satisfied after the initialisation.

Notation
math ascii
∈ : set membership

N NAT the set of natural numbers = non-negative integers

events

Events model what can happen in the machine; the conditions under which they can happen; and how
the state of the machine is changed by the event.

Initialisation =̂
Initialisation is a distinguished event that occurs once only, before any other event. This event initialises
the machine’s variables to a set of values that establishes the invariant. Remember that the variables
do not have any value before initialisation.

then
act1: piggybank := 0 Could initialise piggybank to any natural number

end

FeedBank =̂
any

amount amount to be added to piggybank
where

grd1: amount ∈ N1 if amount were 0 then this event could always fire
then

act1: piggybank := piggybank + amount

end

Notation
math ascii
:= := “becomes equal to”: x := e means assign to the variable x the value of the

expression e

N1 NAT1 the set of non-zero natural numbers
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RobBank =̂
any

amount
where

grd1: amount ∈ N1
grd2: amount ≤ piggybank There must be enough in the piggybank

then
act1: piggybank := piggybank − amount

end

Notation
math ascii
≤ <= less than or equal

end CoffeeClub

Proof Obligations: Sequent representation

As the specification of the model is expressed in mathematics it is possible to generate checks to show
that the behaviour of the model is consistent with the formal constraints of the model. To achieve this
the Event-B workbench, Rodin, generates proof obligations (PO) that can be checked with a prover, or
even verified visually.

There are many classes of POs, (see Appendix-B for a discussion of all types of POs).

Proof obligations will be represented by a sequent [22] having the following form:

hypotheses ` goal

Figure 3.1: Sequent representation of PO

The meaning of the PO shown in 3.1 is

the truth of the hypotheses leads to the truth of the goal.

The symbol ` is sometimes called stile or turnstile. Note:

1. If any of the hypotheses is ⊥ then any goal is trivially established.

2. If the hypotheses are identically > then the hypotheses will be omitted.

Notation
math ascii
> true Boolean true

⊥ false Boolean false
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Proof Obligations for CoffeeClub

CoffeeClub is a very simple model and the POs are correspondingly simple. It is very easy to see
that the POs are satisfiable without resort to a theorem prover. As a consequence the POs are easily
discharged automatically by the provers in the Rodin tool.

The following POs are generated for the above machine.

INITIALISATION/inv1/INV: ` 0 ∈ N

This is requesting a proof that the initialisation, piggybank := 0, establishes the invariant
piggybank ∈ N.

FeedBank/inv1/INV: piggybank ∈ N
amount ∈ N1 ` piggybank + amount ∈ N

This is requesting a proof that the actions of FeedBank, piggybank := piggybank + amount
maintains the invariant, piggybank ∈ N. This is clearly true as both piggybank and amount are
natural numbers.

RobBank/inv1/INV:
piggybank ∈ N
amount ∈ N1

amount ≤ piggybank
` piggybank − amount ∈ N

Similar to the preceding POs, but this time verifying that piggybank ∈ N is maintained after the
action piggybank := piggybank − amount. This is not quite so simple, but the guard amount ≤
piggybank ensures the invariant is maintained.

What you need to know to discharge POs

The first mistake that many people make when faced with discharging a PO, is believing that there is
some other information they need. While it may turn out that some extra information is required, it
should be appreciated that the information presented as in the above POs is “complete”. Complete that
is, excepting the axioms relating to numbers, predicates and logic. It is very important to understand
that the consequent should be proveable from the given hypotheses; there is nothing else in the form of
a hypothesis that should be required. If the PO cannot be discharged then there are many cases that
must be considered, of which

• the invariants are too strong/weak

• the guards are too weak/strong;

• the actions are inappropriate/incomplete

are some possibilities. The problem may go back to the context, which might be wrong/incomplete,
etc.

Proof is syntactic

Discharging a PO is essentially a syntactic exercise: the proof is concerned with symbols and their
properties. Again, many coming to this for the first time may try to reason on the basis of what an
event is doing to the state, or similar types of reasoning. Such reasoning is almost certainly useless,
and counter productive.



3.2. REFINEMENT 9

3.2 Refinement

Refinement is a process that is used describe any or all of the following changes to a model:

extended functionality: we add more functionality to the model, perhaps modelling the requirements
for a system in layers;

more detail: we give a finer-grained model of the events. This is often described as moving from the
abstract to the concrete. This form of refinement tends to move from what towards how ;

changing state model: we change the way that the state is modelled, but also describe how the new
state models the old state.

In all cases of refinement, the behaviour of the refined machine must be consistent with the behaviour of
the machine being refined. It is important to appreciate that consistent does not mean equivalent : the
behaviour of the refined machine does not have to be the same, but the behaviour must not contradict
the behaviour of the machine being refined. As an example, machines may be —and frequently are—
nondeterministic and the refined machine may remove some of the nondeterminism.

Refinement machine

The refinement machine consists of:

a refined state: that is logically a new state. The refined state must contain a refinement relation
that expresses how the refined state models the state being refined. The refined state may contain
variables that are syntactically and semantically equivalent to variables in the state of the machine
being refined. In that case, the new and old variables are implicitly related by an equivalence
relation.

refined events: that logically refine the events of the refined machine. The refined events are consid-
ered to simulate the behaviour of the events being refined, where the effects of the refined events
are interpreted through the refinement relation.

new events: that add new functionality to the model. The new events must not add behaviour that
is inconsistent with the behaviour of the refined machine.

Refinement rules

As mentioned above, refinement requires consistency. This means that any behaviour of a refined event
must be acceptable behaviour of the unrefined event in the unrefined model. An informal example of
this is:

if at a restaurant you asked for a Pepsi or a Coke, then it would be acceptable for you to
be given a Coke, but not acceptable for you to be given a Fanta.

The following rules apply to refinement:

strengthen guards and invariants: guards and invariants can be strengthened, provided overall
functionality is not reduced;

nondeterminism can be reduced: where a model offers choice, then the choice can be reduced in
the refinement;

the state may be augmented by an orthogonal state: new state variables, whose values do not
affect the existing state, may be added.
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Consistently with the above, a single event may be refined by multiple events, or conversely, multiple
events may be refined a single event.

New events As well as refinements of the events of the machine being refined, the refined machine
may introduce new events, but the new events must not change the state of any included from the
refined machine. This is a restriction that recognises that a machine state can be modified only by the
events of that machine, or their refinements.

Refinement of the CoffeeClub

At the moment the CoffeeClub simply describes a piggybank that models an amount (of money), and
events that describe adding to —FeedBank— or taking from —RobBank— the amount modelled by
piggybank. We will now model behaviour that describes club-like behaviour for members who want to
be able to purchase cups of coffee. We will introduce variables members, accounts and coffeeprice and
events that correspond to

a new member joining the club: each member of the club is represented by a unique identifier that
is arbitrarily chosen from an abstract set MEMBER;

a member adding money to their account: each member has an account, to which they can add
“money”;

a member buying a cup of coffee: there will be a variable, coffeeprice, representing the cost of a
cup of coffee, and each member can buy a cup of coffee provided they have enough money in their
account.

The value of all money added to accounts is added to piggybank.

Contexts Contexts are used in Event-B to define constant values such as abstract sets, relations, func-
tions; properties of those constants, called axioms and theorems expressing properties of the constants
that can be deduced from the axioms. The abstract sets are sometimes called carrier sets.

Concepts
axiom an axiom is a property that is asserted; it cannot be proved
theorem a theorem is a property that is implied by axioms or invariants; it must be proved

For this refinement we need to define an abstract set MEMBER, which we will use as the source of
unique identifiers for members. The set is not given a specific size (cardinality), but it is declared to
be finite, meaning that it does have a size (cardinality) that is a natural number. Sets are potentially
infinite, unless declared otherwise. Note that in Event-B infinity is not a natural number.

Context MembersContext

context MembersContext
sets

MEMBER
axioms

axm1: finite(MEMBER)

end
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Concepts
SETS Sets declared in SETS clause of a context are non-empty, opaque sets.

Notation
math ascii
finite finite finite(S) is > if the set S is finite. This does not require the set to have a

specific size, but the set must have a size

Refinement MemberShip

The refinement MemberShip is clearly aimed at adding new functionality, rather than refining the
current functionality. For that reason all events will be displayed in extended mode, a mode supported
by Rodin. In extended mode, only the new parameters, guards and actions are displayed, that is, only
the parts of an event that extend the event being refined.

It should be clear that the events FeedBank and RobBank are unchanged in the refinement, but
NewMember, SetPrice, BuyCoffee and Contribute are new. For that reason FeedBank and RobBank
will be omitted here. They can be found in the appendix A.1.

machine MemberShip
refines

CoffeeClub
sees

MembersContext

variables
piggybank
members the set of current members
accounts the member accounts
coffeeprice the price of a cup of coffee

invariants
inv1: piggybank ∈ N
inv2: members ⊆MEMBER each member has unique id
inv3: accounts ∈ members→ N each member has an account
inv4: coffeeprice ∈ N1 any price other than free!

Notation
math ascii
⊆ <: subset ⊂ or equal =
⊂ <<: strict subset: not equal
→ –-> denotes a total function. If f ∈ X → Y and x ∈ X, then f(x) is defined.
7→ +-> denotes a partial function. If f ∈ X 7→ Y and x ∈ X, then f(x) is not

necessarily defined.

events
Initialisation : extended =̂
then

act2: members := ∅ empty set of members
act3: accounts := ∅ empty set of accounts
act4: coffeeprice :∈ N1 initial coffee price set to arbitrary non-zero value

end
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Notation
math ascii
:∈ :: “becomes in”: x :∈ e means assign to x any element of the set s
∅ {} empty set

SetPrice =̂
any

amount
where

grd1: amount ∈ N1
then

act1: coffeeprice := amount

end

NewMember =̂
any

member
where

grd1: member ∈MEMBER \members choose an unused element of MEMBER
then

act1: members := members ∪ {member}
act2: accounts(member) := 0

end

Notation
math ascii
\ \ Set subtraction: S \ T is the set of elements in S that are not in T
∪ \/ Set union: S ∪ T is the set of elements that are in either S or T

Contribute =̂
any

amount
member

where
grd1: amount ∈ N1
grd2: member ∈ members

then
act1: accounts(member) := accounts(member) + amount

act2: piggybank := piggybank + amount
end

BuyCoffee =̂
any

member
where

grd1: member ∈ members
grd2: accounts(member) ≥ coffeeprice
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then
act1: accounts(member) := accounts(member)− coffeeprice

end

FeedBank : extended =̂
refines

FeedBank
any

where

then

end

RobBank : extended =̂
refines

RobBank
any

where

then

end

end MemberShip

Proof Obligations

INITIALISATION:inv1/INV: ` 0 ∈ N

INITIALISATION:inv3/INV: ` ∅ ∈ ∅→ N

INITIALISATION:inv4/INV: coffeeprice ′ ∈ N1 ` coffeeprice ′ ∈ N1

INITIALISATION:act4/FIS: ` N1 6= ∅

SetPrice/inv4/INV: coffeeprice ∈ N1
amount ∈ N1 ` amount ∈ N1

NewMember/inv3/INV: accounts ⊆ members→ N
member ∈MEMBER \members `

accounts�− {member 7→ 0}
∈
members ∪ {member}→ N
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Contribute/inv1/INV:
piggybank ∈ N
amount ∈ N1

member ∈ members
` piggybank + amount ∈ N

Contribute/inv3/INV:
account ∈ members→ N

amount ∈ N1
member ∈ members

`
accounts�− {member 7→ accounts(member) + amount}
∈
members→ N

Contribute/piggybank/EQL:
amount ∈ N1

member ∈ members ` piggybank = piggybank + amount

Contribute/act2/WD:
amount ∈ N1

member ∈ members `
member ∈ dom(accounts)
∧ accounts ∈MEMBER 7→ Z

BuyCoffee/grd2/WD:

member ∈ members ` member ∈ dom(accounts)
∧ accounts ∈MEMBER 7→ Z

BuyCoffee/inv3/INV:

accounts ∈ members→ N
member ∈ members

accounts(member) ≥ coffeeprice
`

accounts
�− {member 7→ accounts(member)− coffeeprice}
∈
members→ N

BuyCoffee/act1/WD:
member ∈ members

accounts(member) ≥ coffeeprice `
member ∈ dom(accounts)
∧ accounts ∈MEMBER 7→ Z

Notation
math ascii
6= /= a 6= b = a is not equal to b
7→ |-> a 7→ b (a maps to b) is the ordered pair of a and b

The proof obligations contain a surprise: Contribute/piggybank/EQL on action piggybank := piggybank+
amount cannot be discharged by the auto-prover.

This EQL PO requires a proof that piggybank is not changed, but of course, piggybank := piggybank+
amount must change the value of the variable piggybank, unless amount is 0.

What is that all about?

Contribute appears in the refinement as a new event, but here it is changing the value of the variable
piggybank, which is part of the state of CoffeeClub, the machine being refined.

In order to preserve consistency, any event of a refinement that modifies the state of the machine
being refined must itself be a refinement of one or more events of the machine being refined.
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Solution The event FeedBank of CoffeeClub changes the value of the variable piggybank in a similar
way to contribute, thus Contribute must be seen as a refinement of FeedBank and Contribute should
be defined as follows.

Contribute =̂
refines

FeedBank
any

member
where

grd1: member ∈ members
then

act1: accounts(member) := accounts(member) + amount

act2: piggybank := piggybank + amount
end

This removes the EQL PO, and there is an important lesson in this example. In most —if not all—
cases the presence of EQL POs will probably indicate a bad refinement.

What are the new POs?

There are a number of INV POs, but the following are new:

INITIALISATION:act4/FIS: N1 6= ∅

Contribute/act2/WD:
member ∈ dom(accounts) ∧ accounts ∈MEMBER 7→ N1

BuyCoffee/grd2/WD:
member ∈ dom(accounts) ∧ accounts ∈MEMBER 7→ N1

BuyCoffee/act1/WD:
member ∈ dom(accounts) ∧ accounts ∈MEMBER 7→ N1

FIS is concerned with feasibility, deriving in this case from the initialisation

coffeeprice ′ ∈ N1

This will be only feasible if N1 6= ∅, which of course is trivially true.

WD is concerned with well-definedness. Such POs are concerned with showing that an expression
is well defined. In this case they all derive from expression containing f(x), which will only be
well-defined if x ∈ dom(f), in this case member ∈ dom(accounts). This is guaranteed by the
guard member ∈ members and the invariant accounts ∈ member→ N.



16 CHAPTER 3. CONTEXTS, MACHINES, STATE, EVENTS, PROOF AND REFINEMENT

Concepts
well-defined some expressions, especially function applications, may not be defined everywhere.

For example, f(x) is only defined if x is in the domain of f , ie x ∈ dom(f).
feasibility specifying a property with a predicate does not carry with it the promise that there

exist solutions that satisfy the predicate. For example x + 1 = x − 1 cannot be
satisfied by any x ∈ N. Feasibility is concerned with showing that instances that
satisfy a predicate do exist. Feasibility can be extremely difficult to prove and
many famous conjectures, for example Fermat’s last theorem and the four colour
problem, have been solved only recently. Fermat’s last theorem was unsolved for
over 300 years.

3.3 Animation

The process of modelling that is being described here is concerned with ensuring that the model that
is being developed is consistent across the development. There is one flaw:

the analysis of the informally presented requirements cannot be formalised.

Animation is a useful technique that provides for correlation of behaviour with the requirements. It
should be appreciated that animation is not a substitute for rigorous verification using proof. Animation
and rigorous modelling are complementary. In particular, animation provides a strategy for explaining
your model to someone who does not understand Event-B. Animation is also useful to the modeller for
obtaining a view of the behaviour of the events in the model.

AnimB is a very good animation plugin for the Rodin platform. AnimB is interesting because it provides
a number of different ways of animating, all of which can be mixed.

At each step in animation AnimB shows which events are enabled. Then the person running the
animation has the following choices:

1. choose the event and the values of any parameters;

2. choose the event and let the animator choose the values of the parameters nondeterministically;

3. let the animator choose the event and the parameters nondeterministically.

Animation Constraints

Animators generally, and AnimB in particular impose a stronger finiteness constraint than the finiteness
constraints imposed by Event-B. If MemberShip is animated with AnimB, it will be found that the
type of piggybank, namely N, is unsatisfactory. AnimB requires a subrange of N, hence we will have
to specify a maximum amount for piggybank, MAXBANK, and then specify piggybank as a subrange
0 .. MAXBANK. As a consequence various guards also have to be modified. The following shows a
modified version of CoffeeClub and a context PiggyBank in which MAXBANK is given the (arbitrary)
value 1000.

context PiggyBank
constants

MAXBANK
axioms

axm1: MAXBANK ∈ N1
AnimB

MAXBANK 1000
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end

machine CoffeeClub
sees

PiggyBank
variables

piggybank
invariants

inv1: piggybank ∈ 0 .. MAXBANK

events
Initialisation =̂
then

act1: piggybank := 0

end

FeedBank =̂
any

amount
where

grd1: amount ∈ 1 .. MAXBANK − piggybank
then

act1: piggybank := piggybank + amount

end

RobBank =̂
any

amount
where

grd1: amount ∈ 1 .. piggybank

then
act1: piggybank := piggybank − amount

end

end CoffeeClub

The context MembersContext, as before declares a finite set MEMBER, but AnimB requires a finite set
with explicit members. For this purpose the context has a section where AnimB values can be defined.
In this case MEMBER is declared to be a set containing 3 members, {m1,m2,m3}, as shown below.

context MembersContext
sets

MEMBER
axioms

axm1: finite(MEMBER)

AnimB values
MEMBER {m1,m2,m3} Define a set of 3 members

end

The machine MemberShip is as before.





Chapter 4

Refinement

The previous chapter explored a simple development that pursued refinement mainly as
extension. In this chapter we will pursue refinement as a development path from an abstract
specification through to a concrete model that is very close to implementation.

The development will also illustrate the strategy of commencing the model with the most
precise and concise specification of what it is we want to model.

4.1 An example: Square root

Generally, we will not be using examples that are principally numeric computation, but for the current
purpose the example of computing the “integer square root” of a natural number will provide a simple
example that illustrates refinement quite effectively.

Definition and Model

We start with a definition of the square root we want to compute.

Let num be the number whose integer square root we want to compute and sqrt be the square root
function. The integer square root of a natural number is the largest integer that is not greater than the
real square root. We define sqrt as follows:

num ∈ N (4.1)
sqrt ∈ N→ N (4.2)

sqrt(num)× sqrt(num) ≤ num (4.3)
num < (sqrt(num) + 1)× (sqrt(num) + 1) (4.4)

(4.5)

We will use a context to define the constant num, whose square root we wish to compute. The value
of num is any natural number.

context SquareRoot_ctx
extends

Theories
constants

num
axioms

19
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axm1: num ∈ N
end

This context extends a context that contains some theorems that will be useful in the discharge of proof
obligations:

context Theories

axioms
thm1: ∀n · n ∈ N⇒ (∃m ·m ∈ N ∧ (n = 2 ∗m ∨ n = 2 ∗m+ 1))

thm2: ∀n · n ∈ N⇒ n < (n+ 1) ∗ (n+ 1)

thm3: ∀m,n ·m ∈ N ∧ n ∈ N⇒ (m+ n)/2 < n

thm4: ∀m,n ·m ∈ N ∧ n ∈ N⇒ (m+ n)/2 ≥ m
end

We model sqrt as follows:

machine SquareRoot
sees

SquareRoot_ctx
variables

sqrt
invariants

inv1: sqrt ∈ N
events
Initialisation =̂
then

act1: sqrt :∈ N
end

SquareRoot =̂
where

grd1: sqrt ∗ sqrt > num check sqrt
grd2: num ≤ (sqrt+ 1)(sqrt+ 1) is not already computed

then

act1:
sqrt :| (sqrt′ ∈ N
∧ sqrt′ ∗ sqrt′ ≤ num
∧ num < (sqrt′ + 1) ∗ (sqrt′ + 1))

end

end SquareRoot

Notation
math ascii
:| :| “becomes such that”: x :| P , where x is a variable and P is a predicate, means

assign to x a value such that P (x) is >, where > is Boolean true. Within P , x
represents the value of the variable x before the assignment, and x′ represents
the value of x after the assignment. Thus, x :| x′ = x+ 1 assigns the value of
x+ 1 to the variable x. Equivalent to x := x+ 1.
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Note: For a first simple exercise the guards to SquareRoot could be omitted. They prevent the event
running forever

When we look at the Proof obligations we see:

INITIALISATION/inv1/INV: sqrt′ ∈ N ` sqrt′ ∈ N

SquareRoot/inv1/INV:

sqrt ∈ N
sqrt′ ∈ N

sqrt′ ∗ sqrt′ ≤ num
num < (sqrt′ + 1) ∗ (sqrt′ + 1)

` sqrt′ ∈ N

SquareRoot/act1/FIS: num ∈ N `
∃sqrt′ · sqrt′ ∈ N
sqrt′ ∗ sqrt′ ≤ num
num < (sqrt′ + 1) ∗ (sqrt′ + 1)

These are all easy to discharge except the feasibility PO for SquareRoot act1.

It should be clear that the model correctly specifies sqrt, by embedding the definition of sqrt.

What this is asking is:

it is all very well to write a predicate such as this about sqrt′, but show that such an
animal exists!

The important point is that it is easy to write predicates that do not have a solution. The typical way
of discharging such a PO is to give a witness, that is a value for the existential variable(s) that satisfies
the quantified predicate.

It is clear that we cannot do this, so the PO will be left undischarged. Rodin allows the PO to be
reviewed, indicating that the PO has been looked at and it is believed to be true.

We will implicitly satisfy the PO by proceeding with a refinement that will demonstrate how a value
can be computed for sqrt.

It is important to understand that, if it is not possible to discharge a feasibility PO —such as the above
for sqrt— then it will not be possible to complete a concrete refinement, in which we produce a method
of computing sqrt and discharge all POs generated through the refinement.

Refinement: How we make progress

A simple way of motivating what to do next was presented by David Gries in Science of Program-
ming [10]. In the current specification we have two predicates:

sqrt ∗ sqrt ≤ num
num < (sqrt+ 1) ∗ (sqrt+ 1)

Each of them is easy to satisfy on their own, but the difficulty is satisfying them both at the same time.
This suggests that we should use two variables and then try to bring them together. Thus we will use

low ∗ low ≤ num
num < high ∗ high
low < high
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and move low and high closer together until

low + 1 = high

at which point low will be the desired value of sqrt.

We can now model this idea of splitting the invariant.

machine SquareRootR1
refines

SquareRoot
sees

SquareRoot_ctx
variables

sqrt
low
high

invariants
inv1: low ∈ N
inv2: high ∈ N
inv3: low + 1 ≤ high
inv4: low ∗ low ≤ num
inv5: num < high ∗ high
thm1: low + 1 6= high⇒ low < (low + high)/2

thm2: (low + high)/2 < high
variant
high− low

events
Initialisation =̂
then

act1: sqrt :∈ N
act2: low :| low′ ∈ N ∧ low′ ∗ low′ ≤ num
act3: high :| high′ ∈ N ∧ num < high′ ∗ high′

end

SquareRoot =̂
refines

SquareRoot
where

grd1: low + 1 = high

thm1: low ∗ low ≤ num
thm2: num < high ∗ high

then
act1: sqrt := low

end

Improve =̂

status convergent
any

l
h

where
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grd1: low + 1 6= high

grd2: l ∈ N ∧ low ≤ l ∧ l ∗ l ≤ num
grd3: h ∈ N ∧ h ≤ high ∧ num < h ∗ h
grd4: l + 1 ≤ h
grd5: h− 1 < high− low

then
act1: low, high := l, h

end

end SquareRootR1

Parameters

Parameters represent arbitrary, nondeterministic values over which we have no control. Despite that
they have significant influence on the conditions under which an event may fire. In the above we have
introduced parameters l and h to represent improvements in low and high, respectively. The constraints
on l and h are specified, but there is no guidance given as to how to choose such values. Notice that
the specification allows for only one of l and h to be an improvement, but one must be an improvement,
or the machine will deadlock.

Convergence and Variants

The event Improve has been given a status of convergent. The reason is that the original single event
SquareRoot has been refined into an event that will fire only once, when its guard is satisfied, but we
have introduced a new slave event Improve that could, in principle, fire forever. By giving it the status
convergent we are signalling that the event converges, i.e. it will fire some finite number of times. To
prove convergence we are required to give a variant. A variant is an expression that may be of two
possible forms:

1. an expression that yields an integer value, or

2. an expression that yields a finite set

The variant is subject to the following constraints:

case 1: whenever any convergent event occurs the value of the variant must yield a natural number
and must strictly decrease across the event;

case 2: whenever any convergent event occurs the cardinality of the variant must strictly decrease
across the event.

By decrease across the event we mean that the value on exit from the event is less than the value on
entry to the event.

It is clear that if these constraints on the variant are satisfied then all convergent events must eventually
terminate.

The variant produces the following POs for each convergent event:

VWD: possible well-definedness PO;

NAT: proof that a numeric variant always yields a natural number after the event;
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VAR: proof that the event reduces the value of a numeric-valued variant expression, or the cardinality
of a set-valued variant.

Notice that the variant in the above machine could also have been a set-valued variant: low .. high.

Failure of the PO generated for the variant may show that the machine is subject to livelock. Livelock
occurs when “main events”, in this case the SquareRoot cannot fire because the slave events can fire
indefinitely.

Improving Improve

We will now refine Improve. The central idea is to refine either low or high by choosing a value that is
strictly between low and high; we know we can do that because low and high are separated by more
than 1: low < high and low + 1 6= high. In the first refinement we will propose a new parameter m
that replaces either l or h. We will refine Improve in two ways: improving either low or high.

machine SquareRootR2
refines

SquareRootR1
sees

SquareRoot_ctx
variables

sqrt
low
high

invariants

events
Initialisation : extended =̂
then

end

SquareRoot : extended =̂
refines

SquareRoot
where

then

end

Improve1 =̂
refines

Improve
any

m
where

grd1: low + 1 6= high

grd2: m ∈ N
grd3: low < m ∧m < high

grd4: m ∗m ≤ num m is a better value for low
with

l: l = m

h: h = high
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then
act1: low := m

end

Improve2 =̂
refines

Improve
any

m
where

grd1: low + 1 6= high

grd2: m ∈ N
grd3: low < m ∧m < high

grd4: m ∗m > num m is a better value for high
with

l: l = low

h: h = m
then

act1: high := m

end

end SquareRootR2

Witness and the With clause

The issue here is that we have replaced two parameters, l and h, by a single parameter, m, in each of
the two refinements of Improve. Parameters l and h have disappeared. To enable the verification that
Improve1 and Improve2 do refine Improve we have to give what is known as a witness for l and h. This
will show how the new parameters simulate the old.

Refining SquareRootR2

The previous refinement introduced the value m and defined it declaratively as simply a value —any
value— strictly between low and high. We can proceed with many different strategies for m

1. low + 1 and high− 1

2. a value mid way between low and high

We will adopt for 2 this refinement.

machine SquareRootR3
refines

SquareRootR2
sees

SquareRoot_ctx
variables

sqrt
low
high

invariants
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events
Initialisation : extended =̂
then

end

SquareRoot : extended =̂
refines

SquareRoot
where

then

end

Improve1 =̂
refines

Improve
any

m
where

grd1: low + 1 6= high

grd2: m = (low + high)/2

grd3: m ∗m ≤ num m is a better value for low
then

act1: low := m

end

Improve2 =̂
refines

Improve
any

m
where

grd1: low + 1 6= high

grd2: m = (low + high)/2

grd3: m ∗m > num m is a better value for high
then

act1: high := m

end

end SquareRootR3

Refining SquareRootR3

SquareRootR3 is still not completely concrete as it depends on the abstract parameter m. But the
value of m is clearly able to be computed from the values of the variable low and high and hence can
be replaced by a variable, which we will name mid. Thus, we will introduce a variable mid with the
invariant

mid ∗mid > num
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At the same time we will remove the nondeterministic initialisation of low and high, making it easier
to initialise mid, and also producing a concrete machine, or algorithm. It is clear that initialisation
of low to 0 and high to num + 1 will satisfy the invariant, but it is also clear that neither will be
very good approximations to the square root for very large values of num. However, finding a better
approximation will require computation and as the final algorithm is logarithmic it can be argued that
0 and num+ 1 are good enough.

machine SquareRootR4
refines

SquareRootR3
sees

SquareRoot_ctx
variables

sqrt
low
high
mid

invariants
inv1: mid = (low + high)/2

events
Initialisation =̂
then

act1: sqrt := 0

act2: low := 0

act3: high := num+ 1

act4: mid := (num+ 1)/2
end

SquareRoot : extended =̂
refines

SquareRoot
where

then

end

Improve1 =̂
refines

Improve
any

where
grd1: low + 1 6= high

grd2: mid ∗mid ≤ num mid is a better value for low
with

m: m = mid

then
act1: low := mid

act2: mid := (mid+ high)/2
end

Improve2 =̂
refines

Improve
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any

where
grd1: low + 1 6= high

grd2: mid ∗mid > num mid is a better value for high
with

m: m = mid

then
act1: high := mid

act2: mid := (low +mid)/2
end

end SquareRootR4

An alternative refinement to SquareRootR4

It is possible to refine directly from SquareRootR2 to SquareRootR4 bypassing the step in which the
parameter m is equated to (low + high)/2 and going straight to the introduction of the variable mid.
That is not to say that either approach is better. The sequence we have used does highlight the fact
that there are many different strategies for choosing the value of m.

Exercise

Produce the alternative refinement step from SquareRootR3 to SquareRootR4. Name it Square-
RootR4B.

4.2 Modelling a parametric argument

In the model above we modeled the argument to the SquareRoot event as a constant num in the context
to the SquareRoot machine. That is perfectly satisfactory as far as verifying the square root process,
however it is not parametric.

The following is a repeat of the modelling of SquareRoot using a parameter.

machine SquareRoot
sees

Theories
variables

sqrt
invariants

inv1: sqrt ∈ N
events
Initialisation =̂
then

act1: sqrt :∈ N
end

SquareRoot =̂
any

num
where
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grd1: num ∈ N
then

act1:
sqrt :| (sqrt′ ∈ N
∧ sqrt′ ∗ sqrt′ ≤ num
∧ num < (sqrt′ + 1) ∗ (sqrt′ + 1))

end

end SquareRoot

The above is very similar to the earlier starting point for SquareRoot except that num is now a param-
eter.

When SquareRoot is refined it is clear that in order to be able to reference the value of the num
parameter from different Events the value num will have to be stored in a variable.

machine SquareRootR1
refines

SquareRoot

sees
Theories

variables
sqrt
low
high
numv
active

invariants
inv1: numv ∈ N
inv2: low ∈ N
inv3: high ∈ N
inv4: low + 1 ≤ high
inv5: low ∗ low ≤ numv
inv6: numv < high ∗ high
inv7: active ∈ BOOL

inv8:
active = FALSE⇒
sqrt ∗ sqrt ≤ numv ∧
(sqrt+ 1) ∗ (sqrt+ 1) > numv

variant
high− low

events
Initialisation =̂
then

act1: numv := 0

act2: low := 0

act3: high := 1

act4: sqrt := 0

act5: active := FALSE
end

SquareRoot =̂
refines
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SquareRoot
where

grd1: low + 1 = high

grd2: active = TRUE
with

num: num = numv

then
act1: sqrt := low

act2: active := FALSE
end

Improve =̂

status convergent
any

l
h

where
grd1: low + 1 6= high

grd2: l ∈ N ∧ low ≤ l ∧ l ∗ l ≤ num
grd3: h ∈ N ∧ h ≤ high ∧ num < h ∗ h
grd4: l + 1 ≤ h
grd5: h− 1 < high− low
grd6: active = TRUE

then
act1: low, high := l, h

end

activate =̂
any

num
where

grd1: num ∈ N
grd2: active = FALSE

then
act1: numv := num

act2: low :| low′ ∈ N ∧ low′ ∗ low′ ≤ num
act3: high :| high′ ∈ N ∧ num < high′ ∗ high′
act4: active := TRUE

end

end SquareRootR1

Notation
math ascii
BOOL BOOL BOOL = {TRUE,FALSE}
bool bool = {>,⊥}

Note: the type bool is not denotable in an Event-B model.

The BOOL variable, active is used in the above refinement to distinguish between the states when the
events are actively searching for a square root (active = TRUE) and the quiescent state (active =
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FALSE) when a square root has been found.

Remainder of development

The remainder of the development follows the development above for the parameterless SquareRoot
event, leading to the final refinement.

machine SquareRootR4
refines

SquareRootR3
sees

Theories
variables

sqrt
numb
low
high
active
mid

invariants
inv1: mid = (low + high)/2

events
Initialisation =̂
then

act1: numv := 0

act2: low := 0

act3: high := num+ 1

act4: sqrt := 0

act5: active := FALSE

act6: mid := 0
end

SquareRoot =̂
refines

SquareRoot
where

grd1: low + 1 = high

grd2: active = TRUE
then

act1: sqrt := low

act2: active := FALSE
end

Activate =̂
refines

activate
any

num
where

grd1: num ∈ N
grd2: active = FALSE

then
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act1: numv := num

act2: low := 0

act3: high := num+ 1

act4: mid := (num+ 1)/2

act5: active := TRUE
end

Improve1 =̂
refines

Improve1
where

grd1: low + 1 6= high

grd2: mid ∗mid ≤ numv
with

m: m = mid

then
act1: low := mid

act2: mid := (mid+ high)/2
end

Improve2 =̂
refines

Improve2
where

grd1: low + 1 6= high

grd2: numv < mid ∗mid
grd3: active = TRUE

with
m: m = mid

then
act1: high := mid

act2: mid := (low +mid)/2
end

end SquareRootR4

Converting to programming code

The final refinement is easily seen to be translated to the following code.

low := 0;

high := num+ 1;

while low + 1 6= high {

mid := (low + high)/2

if mid ∗mid ≤ num{
low := mid

}
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else high := mid

}

sqrt := low





Chapter 5

Invariants: Specifying Safety

Use of invariants to formulate “safety” and as a means of ensuring “safety”

Use of theorems to provide a check on properties that are expected to be satisfied

Increasing familiarity with the set theory used by Event-B

Data refinement: this chapter contains the first example of refinement that significantly
refines the data (variables) of the model

There is a danger that the invariant is seen merely as a mechanism for typing variables, somewhat
similar to the type specifications in typed programming languages. The square root example should
have shown that the invariant is more than that. The invariant can be used to specify the semantic
relationship between variables, and in the square root example that relationship was critical to being
able to demonstrate that the value finally produced in the variable sqrt —when all the events complete—
did indeed produce the required value of the square root. If the invariants were reduced to recording
only type information, the model would still behave the same as the preceding model, but the PO would
not provide confirmation.

This should highlight the requirement that developers of Event-B models should make maximum use
of invariance and not behave in the way they might if writing a program.

Invariants should be as strong as possible, but no stronger.

Invariants are often described metaphorically as safety constraints and in the next example the invariant
is literally an expression of safety.

Also, theorems provide very useful sanity checks to confirm those properties that are “obviously” true.

5.1 Simple Traffic Lights

We wish to explore the use of invariants to ensure safety for a traffic light controlled intersection. The
discussion will move from:

a simple 2-way intersection consisting of NorthSouth and EastWest directions, and then moving to

a generalised multiway intersection

The simple two-way intersection consists of two directions: NorthSouth and EastWest. Each direction
has two sets of identical traffic lights each displaying Red, Green and Amber lights. There are only two
directions: for example there is no turn-right or turn-left direction.

35
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context SimpleTwoWay0
sets

LIGHTS DIRECTION
constants

Red
Green
Amber
NorthSouth
EastWest

axioms
axm1: partition(LIGHTS, {Red}, {Green}, {Amber})
axm2: partition(DIRECTION, {NorthSouth}, {EastWest})

end

Notation
math ascii

partition partition partition(S,(s1),. . .,(sn)) means S = s1 ∪ . . .∪ sn, and the sets s1, . . . , sn
are pairwise disjoint: si ∩ sj = ∅

∩ /\ Set intersection: S ∩ T is the elements of elements that are in both S
and T

partition(LIGHTS, {Red}, {Green}, {Amber}) is equivalent to

LIGHTS = {Red,Green,Amber}
Red 6= Green
Green 6= Amber
Amber 6= Green

Sets LIGHTS and DIRECTION are finite enumerated sets.

• LIGHTS has 3 distinct colours, and

• DIRECTION has 2 distinct directions.

Now consider a machine SimpleChangeLights of which only a skeleton will be shown.

machine SimpleChangeLights
sees

SimpleTwoWay1
variables

lights

end SimpleChangeLights

At the moment lights is simply declared as a total function from DIRECTION to LIGHTS, and we
want to explore what else is necessary to ensure a safe set of traffic lights.

We want the following to be true:

• whenever the intersection is unsafe the invariant must be false;

• whenever the invariant is true the intersection must be safe.
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That is:

¬(safe)⇒¬(invariant) (5.1)

and

invariant⇒ safe (5.2)

Note that instead of x = >, we will simply write x, and wherever we might write x = ⊥, we will simply
write ¬x, for example safe and invariant in the above.

Notation
math ascii
¬ not negation: ¬P negates the predicate P

5.2 will be recognised as the contrapositive of 5.1, that is

P ⇒Q ≡ ¬Q⇒¬P

so we have only one requirement for safety, not two.

The second invariant —the safety condition— could be

lights(NorthSouth) ∈ {Green,Amber}⇒ lights(EastWest) = Red

or

lights(EastWest) ∈ {Green,Amber}⇒ lights(NorthSouth) = Red

Red Amber
Red safe safe safe
Green safe unsafe unsafe
Amber safe unsafe unsafe

There are other invariants that adequately express safety for a two-way intersection:

lights(NorthSouth) = Red ∨ lights(EastWest) = Red

Red ∈ ran(lights)

But these conditions do not generalise to intersections with more than two ways. Indeed the expression
of the invariant that best generalises is the formulation given in the next section.
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Simplifying and Generalising

Instead of referencing the directions and their conflicting directions by name we will define a constant
function OTHERDIR that maps NorthSouth to EastWest and vice-versa. This prepares the context to
deal with multiple directions, something we will do in the next section. The definition of OTHERDIR
is given in a new context, SimpleTwoWay1, that is an extension of SimpleTwoWay0

context SimpleTwoWay1
extends

SimpleTwoWay0
constants

OTHERDIR
axioms

axm3: OTHERDIR ∈ DIRECTION →DIRECTION

axm4: OTHERDIR(NorthSouth) = EastWest

axm5: OTHERDIR(EastWest) = NorthSouth

thm1:
∀dir · dir ∈ DIRECTION
⇒
OTHERDIR(OTHERDIR(dir)) = dir

thm2: OTHERDIR ;OTHERDIR ⊆ id
end

Notation
math ascii
id id id is the identity relation: for all x ∈ X, x 7→ x ∈ id. id is generic; to restrict it to

a particular set X domain restriction can be used: X � id
� <| Domain restriction: s� r is the subset of r in which the domain is restricted to the

set s

The context SimpleTwoWay1 extends SimpleTwoWay0 with a relation, OTHERDIR, (actually a
total function) that maps each of the directions, respectively, to the “other” direction. The behaviour
of OTHERDIR is defined by axioms axm3, axm4, axm5.

The same behaviour could be defined using universal quantification as shown in thm1, however given
the axiomatic definition this behaviour should now be provable, hence the use of a theorem.

Similarly, it should be clear that if OTHERDIR is sequentially composed with itself the result should
be the identify relation on the set DIRECTION . Again, this is tested by proposing a theorem.

The Simple TwoWay machine

The machine has a three events that, respectively, change the light in a particular direction to Red,
Green or Amber. The machine must ensure:

• safety;

• correct sequencing: Red, Green, Amber, Red, . . .

machine SimpleChangeLights
sees

SimpleTwoWay0
variables
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lights
invariants

inv1: lights ∈ DIRECTION → LIGHTS

inv2: lights(NorthSouth) ∈ {Green,Amber}⇒ lights(EastWest) = Red

thm1: lights(Northsouth) ∈ {Green,Amber}⇒ Lights(EastWest) = Red
events
Initialisation =̂
then

act1: lights = {NorthSouth 7→ Red,EastWest 7→ Red}

end

ToAmber =̂
any

dir
where

grd1: lights(dir) = Green Sequencing
thm1: lights(OTHERDIR(dir)) = Red Safety

then
act1: lights(dir) := Amber

end

ToGreen =̂
any

dir
where

grd1: lights(dir) = Red Sequencing
grd2: lights(OTHERDIR(dir)) = Red Safety

then
act1: lights(dir) := Green

end

ToRed =̂
any

dir
where

grd1: lights(dir) = Amber Sequencing; Safety is preserved
then

act1: lights(dir) := Red

end

end SimpleChangeLights

5.2 A Multiway Intersection

The multiway intersection consists of:

DIRECTION: a finte set of directions that are not enumerated;

LIGHTS: the standard set of Red, Green and Amber lights;

CONFLICT: a relation identifying directions that conflict with one another.
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context TrafficLights2_ctx
sets

LIGHTS
DIRECTION

constants
Red
Green
Amber
CONFLICT

axioms
axm1: partition(LIGHTS, {Red}, {Green}, {Amber})
axm2: finite(DIRECTION)

axm3: CONFLICT ∈ DIRECTION ↔DIRECTION

axm4: CONFLICT ∩ id = ∅
axm5: CONFLICT−1 = CONFLICT

thm1: ∀d · d ∈ DIRECTION ⇒ d /∈ CONFLICT [{d}]
thm2: ∀d1, d2 · d1 /∈ CONFLICT [d2]⇒ d2 /∈ CONFLICT [d1]

end

Notation
math ascii
/∈ /: not an element of ; non-membership
r[s] r[s] Relational image: r[s] is the set of values related to all elements of s under

the relation r

Notes on CONFLICT

axm3: CONFLICT is a relation that relates all pairs of directions for which a safety invariant applies:

∀d1, d2.d1 7→ d2 ∈ CONFLICT (5.3)
LIGHTS[d1] ∈ {Green,Amber} ⇒ LIGHTS(d2) = Red; (5.4)

axm4: (irreflexive) no direction can conflict with itself;

axm5: (symmetry) conflicts are symmetric: d1 conflicts with d2 ⇒ d2 conflicts with d1;

thm1: no direction d can be in the set of directions that conflict with d. This follows from axm4,
since if it weren’t true then the direction would conflict with itself.

thm2: the contrapositive of symmetry: d2 does not conflict with d1 ⇒ d1 does not conflict with d2.

The Initial Traffic Light model

Our initial model may look strange, as we are going to consider an initial state that has only Red and
Green lights, and only events for changing Red to Green and vice-versa.

This models the sense in which those events are the primary events and changing lights from Green
to Amber is a further expression of a safety constraint. An intersectin in which lights were suddenly
changed between Red and Green would be far from safe, despite our safety invariant.

Also in the interest of safety we will introduce time intervals between light changes.
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machine ChangeLights2
sees

TrafficLights2_ctx

variables
lights

invariants
inv1: lights ∈ DIRECTION →{Red,Green}

inv2: ∀d·d ∈ DIRECTION ∧ lights(d) = Green
⇒ lights[CONFLICT [{d}]] ⊆ {Red}

inv3: finite(lights)
events
Initialisation =̂
then

act1:
lights : |lights′ ∈ DIRECTION →{Red,Green}
∧ (∀d·d ∈ DIRECTION ∧ lights′(d) = Green
⇒ lights′[CONFLICT [{d}]] ⊆ {Red})

end

RedToGreen =̂
any

adir
where

grd1: lights(adir) = Red

then
act1: lights := lights�− (CONFLICT [{adir}]× {Red})�− {adir 7→ Green}

end

ToRed =̂
any

adir
where

grd1: lights(adir) = Green

then
act1: lights(adir) := Red

end

end ChangeLights2

Notation
math ascii
�− <+ Override: r �− s yields the relation r overridden by the relation s. As far as

possible r �− s behaves like s: r �− s = dom(s)�− r ∪ s

While the above machine preserves the safety invariant the intersection is not safe as lights are changed
instantly from Green to Red and from Red to Green.

The data refinement ChangeLight2R will address that problem by introducing Amber between Green
and Red, and also introducing a delay between all transitions. What we are doing is opening up the
state to reveal more detail.

Thus, lights is refined to xlights, (extra lights), that introduces Amber.
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machine ChangeLight2R
refines

ChangeLight2
sees

TrafficLights2_ctx
variables

xlights
delay
rdir
togreen
tored

invariants
inv1: xlights ∈ DIRECTION → LIGHTS

inv2: ∀d·d ∈ DIRECTION ∧ xlights[{d}] ⊆ {Green,Amber}
⇒ xlights[CONFLICT [{d}]] ⊆ {Red}

inv3: rdir ∈ DIRECTION
inv4: togreen ∈ BOOL
inv5: tored ∈ BOOL
inv6: togreen = TRUE⇒ tored = FALSE

inv7:
togreen = TRUE
⇒ CONFLICT [{rdir}]�− lights
= CONFLICT [{rdir}]�− xlights

inv8: delay ⊆ DIRECTION

inv9: tored = TRUE
⇒ (xlights�− {rdir 7→ Red} = lights�− {rdir 7→ Red})

inv10: togreen = FALSE ∧ tored = FALSE
⇒ lights = xlights

thm1: finite(xlights)

thm2:

∀d, b, a·d ∈ DIRECTION
∧ b ∈ LIGHTS ∧ a ∈ LIGHTS ∧ a 6= b
∧ xlights(d) = b
⇒
card((xlights�− {d 7→ a})� {b})
=
card(xlights� {b})− 1

changing light in direction
d from b (= before)to a
(= after) decreases num-
ber of colour b lights by
1

thm3:

∀d, b, a·d ∈ DIRECTION
∧ b ∈ LIGHTS ∧ a ∈ LIGHTS ∧ a 6= b
∧ xlights(d) = b
⇒
card((xlights�− {d 7→ a})� {a})
=
card(xlights� {a}) + 1

changing light in direction
d from b (= before) to a
(=after) increases number
of colour a lights by 1

thm4:

∀d, b, a, c·d ∈ DIRECTION
∧ b ∈ LIGHTS ∧ a ∈ LIGHTS ∧ c ∈ LIGHTS
∧ xlights(d) = b ∧ c 6= a ∧ c 6= b
⇒
card((xlights�− {d 7→ a})� {c})
=
card(xlights� {c})

changing light in direction
d from b (= before) to a
(=after) does not change
number of colour c, c /=
a, c /= b
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Notation
math ascii
�− «| Domain subtraction: s �− r is the subset of r in which s has been subtracted

from the domain of r
� Range restriction: r � s is the subset of r in which the range is restricted to

the set s

events
Initialisation =̂
with

lights’ : lights′ = xlights′

then

act1:

xlights :|
xlights′ ∈ DIRECTION →{Red,Green}
∧ (∀d·d ∈ DIRECTION ∧ xlights′(d) = Green
⇒
xlights′[CONFLICT [{d}]] ⊆ {Red})

act2: delay := ∅
act3: togreen, tored := FALSE,FALSE

act4: rdir :∈ DIRECTION
end

RedToGreen =̂
refines

RedToGreen
where

grd1: togreen = TRUE

grd2: xlights(rdir) = Red

grd3: xlights[CONFLICT [{rdir}]] ⊆ {Red}
grd4: rdir /∈ delay

with
adir: adir = rdir

then
act1: xlights(rdir) := Green

act2: togreen := FALSE
end

RedToGreenInit =̂
any

adir
where

grd1: togreen = FALSE

grd2: tored = FALSE

grd3: xlights(adir) = Red
then

act1: rdir := adir

act2: togreen := TRUE
end

GreenToAmber =̂
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status Convergent
any

dir
where

grd1: togreen = TRUE

grd2: dir ∈ CONFLICT [{rdir}]
grd3: xlights(dir) = Green

grd4: dir /∈ delay
then

act1: xlights(dir) := Amber

act2: delay := delay ∪ {dir}
end

AmberToRed =̂

status ordinary
convergent any

dir
where

grd1: togreen = TRUE

grd2: dir ∈ CONFLICT [{rdir}]
grd3: xlights(dir) = Amber

grd4: dir /∈ delay
then

act1: xlights(dir) := Red

act2: delay := delay ∪ {rdir}
end

Delay =̂

status ordinary
convergent any

dir
where

grd1: dir ∈ delay
then

act1: delay := delay \ {dir}
end

ToRed =̂
refines

ToRed
where

grd1: tored = TRUE

grd2: xlights(rdir) = Amber

grd3: rdir /∈ delay
with

adir : adir = rdir

then
act1: xlights(rdir) := Red

act2: tored := FALSE
end
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ToRedInit =̂
any

adir
where

grd1: xlights(adir) = Green

grd2: tored = FALSE

grd3: togreen = FALSE
then

act1: rdir := adir

act2: tored := TRUE
end

ToAmber =̂
where

grd1: tored = TRUE

grd2: xlights(rdir) = Green

grd3: rdir /∈ delay
then

act1: xlights(rdir) := Amber

act2: delay := delay ∪ {rdir}
end

variant
4 ∗ card(xlights� {Green}) + 2 ∗ card(xlights� {Amber}) + card(delay)

end ChangeLight2R
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Chapter 6

Event-B Semantics

This chapter presents the semantics of Event-B.

The various Proof Obligations(PO) that result from those semantics.

An understanding of “what those POs mean”.

The roles of POs in verifying a refinement.

The classification of POs, which identify what a particular PO is “all about”.

6.1 Semantics in Event B

• Each construct in B is given a formal semantics.

• Additionally, machines must satisfy a set of constraints.

These rules provide for

• the verification of the consistency of a machine;

• the verification that the behaviour of a refinement machine is consistent with the behaviour of the
machine it refines.

Note that it is not possible to prove that the behavior of the initial abstract machine is correct, that is,
conforms with the written requirements.

State Change

There are three principle constructions —that Event B calls substitutions— for changing the state of a
machine:

x := e x becomes equal to the value of e

This rule may be used recursively to assign to any number of variables.

x :| P x becomes such that it satisfies the before-after predicate P

x :∈ s x becomes in the set s

47
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All of the above, except apparently :∈, can be extended to multiple assignment : x, y := e1, e2 and
x, y :| P , and recursively to many variables. The variables must be distinct.

Note: all assignments can be written in the form: x, y :| P .

Before-After Predicates

Before-after predicates contain primed and unprimed variables, for example

x′ = x+ 1

where the primed variables represent the after value of a variable and the unprimed variables the before
value.

Thus,

x :| x′ = x+ 1

and

x := x+ 1

are equivalent.

Similarly we can write

x, y :| x′ = x+ 1 ∧ y′ = y + 1

or

x, y := x+ 1, y + 1.

Substitution

We will frequently need to compute, for example in computing POs, the weakest predicate on the state
before a state given a required predicate on the after state.

We can do this by substituting into the after state.

We will write

[x, y := e1, e2]R

to denote the concurrent substitution of e1 and e2 for x and y in R, respectively.

For example,

[x, y := y − 1, x+ 1]x− y < x+ y
= (y − 1)− (x+ 1) < (y − 1) + (x+ 1)
or y − x− 2 < y + x

This gives the weakest constraint on the before state such that x, y := y − 1, x + 1 will give an after
state satisfying x− y < x+ y.
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Other Forms of Substitution

For each of the 3 change of state substitutions, substitution into a predicate takes the following form:

v :∈ S ∀v′ · v′ ∈ S⇒ [v := v′]R

where:

1. v in general is a list of variables, and E a list of expressions;

2. P is a predicate containing both v and v′, where v′; represents the value of v afer the action.

Contexts

Sets
S

Constants
C

Axioms
A

Theorems
Tc

Contexts are used to define abstract carrier sets (S ) and constants (C ).

Notice that S and C are essentially extensions of the “builtin” sets such as N,N1,Z etc and constants
from those sets, but we will elide any explicit extension.

Context Machines: Semantics & Proof Obligations

The semantics of the sets and constants are specified in the axioms. The essential proof obligations is
one of feasibility : show that sets and constants exist that will satisfy the axioms. That is:

(∃S,C ·A)

where sub-axioms a1, a2, . . . an are effectively conjuncted into a single A. The POs can be recursively
split into separate POs based on

(∃S,C · a1 ∧ a2 ∧ . . . ∧ an)
≡ ∃S,C · a1 ∧ (∃S,C · a1⇒ a2 ∧ . . . ∧ an)

This may require the sub-axioms to be ordered

Of course, components of S,C that are not referenced in ai can be eliminated from ∃S,C · ai.

Theorems

Theorems describe properties that follow from the axioms, so the general PO for the theorems is

(∀S,C.A⇒ Tc)
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The theorems will, in general, be broken in sub-theorems t1, t2, . . . tn, and since universal quantification
distributes through conjunction this breaks into multiple POs:

(∀S,C.A⇒ t1), . . . (∀S,C.A⇒ tn)

Thus, separate proof obligations can be generated for each theorem, however since the sub-theorems
are usually distributed through the axioms (or invariants or guards depending on the context of the
theorem), theorems must be placed after any axioms on which it depends.

Machines

The form of a machine is:

Context
S,C

Variables
V

Invariant
I

Theorems
Tv

Variant
Var

Events
E

Machine POs: Invariant and Theorems

The invariant as for the axioms for context machines, the invariant may raise feasibility proof obli-
gations:

(∃S,C ·A)⇒ (∃V · I)

The theorems must follow from the set/constant axioms and the invariant:

∀S,C, V ·A ∧ I ⇒ Tv

Note: where we have A we could also have A ∧ Tc, but since A⇒ C this does not gain any extra
strengthening.

Initialisation

Initialisation, which is a special part of the events, must establish a state in which the variables satisfy
the invariant.

Let us represent the initialisation by a multiple substitution

V := E(S,C)

where E(S,C) emphasises that the initialising expressions can only reference sets and constants: E
must not reference any variables, since all variables at this point are undefined.
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Then the proof obligation for initialisation is

∀S,C ·A⇒ [V := E(S,C)] I

Events

Events have the following form

ANY
x

WHERE
G

THEN
Action

Event: Proof Obligations

There may be feasibility POs: that there exist parameters P that will satisfy the guards G

∀S,C ·A ∧ ∃V, x · I ∧G

Event: Maintaining Invariant

The event must maintain the invariant of the machine: essentially the invariant will be true before the
event is scheduled and must remain true when the event terminates.

∀S,C, V, x ·A ∧ I ∧G⇒ [Action]I

Machine Refinements

The form of a refinement machine is

Context
Sr, Cr

Variables
Vr

Invariant
Ir

Theorems
T+
v

Events
Er refines E

E
Variant

Var

where Er represents a refined event and E represents new normal events.
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Variables and Invariant

The variable Vr are in general a superset of the variables in the machine being refined.

The invariant is the invariant of the refined machine plus invariants for the new variables. In addition
the invariant contains the refinement relation relating the state of the refined machine to the variables
of the refining machine. This gives a simulation relation.

The proof obligations for the variables, invariant and theorems are similar to those for the machine
given above. We will concentrate on the new proof obligations that arise from the refined events.

Proof Obligations

∀Vi, V · Ir⇒ I

the new invariant must not allow behaviour that was not part of the refined machine’s behaviour,
excepting where the state of the refining machine is “orthogonal” to the refined machine.

Refined Events

Refined Events have the following form

ANY
xr

WHERE
Gr

WITH
w :W

THEN
Actionr

Proof Obligations for Refined Events

guard refinement

∀S,C, Sr, Cr, V, Vr, x, xr ·A ∧Ar ∧ I ∧ Ir⇒ (Gr⇒G)

witness

∀S,C, Sr, Cr, V, Vr, x, xr ·A ∧Ar ∧ I ∧ Ir⇒ (∃w ·W )

Simulation

∀S,C, Sr, Cr, V, Vr, x, xr ·A ∧Ar ∧ I ∧ Ir ∧W ∧ [Actionr]Ir⇒ [Action]I

where Ar denotes the refinement axioms.

The Variant and Convergent Events

The variant (V ar) is an expression that denotes either a finite set or a natural number.

The purpose of the variant is to show that all convergent events must terminate. This is achieved by
showing that the size of the set, or the natural number value is strictly decreasing.

Natural number variant

∀S,C, Sr, Cr, V, Vr, x, xr ·A ∧ I ∧ Ir ∧W ⇒ V ar ∈ N
∀S,C, Sr, Cr, V, Vr, x, xr ·A ∧ I ∧ Ir ∧W ⇒ [Actionr]V ar < V ar
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Set variant

∀S,C, Sr, Cr, V, Vr, x, xr ·A ∧ I ∧ Ir ∧W ⇒ finite V ar

∀S,C, Sr, Cr, V, Vr, x, xr ·A ∧ I ∧ Ir ∧W ⇒ card([Actionr]V ar) < card(V ar)

6.2 One Point Rule

Consider ∀x · x ∈ X ∧ x = e⇒ P (x).

For any x in S, x = e is either true or false. If it is false then the universal quantification is trivially
true; if it is true then the quantification reduces to P (e). So

(∀x · x ∈ X ∧ x = e⇒ P (x)) = P (e)

By a similar argument,

(∃x · x ∈ X ∧ x = e ∧ P (x)) = P (e)

Strictly, each should be conjuncted with ∃x · x ∈ X ∧ x = e.
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Chapter 7

Data Refinement: A Queue Model

This model of a simple queue explores data-refinement to a greater depth than in previous
models.

The model explores refinement to concrete machines that are closely related to class models
in object-oriented design, and are refined far enough to be directly translatable to code.

Todo: Lots! this chapter needs much more commentary.

7.1 Context for a queue

context QueueContext
sets

TOKEN
ITEM

constants
QUEUE

axioms
axm1: finite(TOKEN)

axm2: finite(ITEM)

axm3: QUEUE = {q | q ∈ N�� TOKEN ∧ finite q ∧ dom q = 1 .. card(q)}
thm1: ∅ ∈ QUEUE

end

7.2 A Queue machine

machine QueueA
sees

QueueContext
variables

55
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queuetokens tokens for currently queued items
queue the queue of tokens
queueitems a function for fetching the item associated with a token
qsize current size of queue

invariants
inv1: queuetokens ⊆ TOKEN
inv2: queue ∈ QUEUE
inv3: qsize ∈ N
inv4: queue ∈ 1 .. qsize�� queuetokens

thm1:
∀i, j · i ∈ dom(queue) ∧ i 6= j
⇒
queue(i) 6= queue(j)

thm2: queuetokens = ran(queue)

inv5: queueitems ∈ queuetokens→ ITEM

thm3: card(queue) = qsize

thm4: queue−1 ∈ queuetokens�� 1 .. qsize

thm5: queuetokens 6= ∅⇒ qsize 6= 0

Notation
math ascii
7� +>> Partial surjection: a surjective function is an onto relation which maps to all ele-

ments of the range.
�� >->> Total bijection: a total bijective function is a one-to-one and onto relation which

maps all elements of the domain

events
Initialisation =̂
then

act1: queuetokens := ∅
act2: queue := ∅
act3: qsize := 0

act4: queueitems := ∅
end

Enqueue =̂
any

item
qid

where
grd1: item ∈ ITEM
grd2: qid ∈ TOKEN \ queuetokens

then
act1: queuetokens := queuetokens ∪ {qid}
act2: queue(qsize+ 1) := qid

act3: queueitems(qid) := item

act4: qsize := qsize+ 1
end
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Dequeue =̂
where

grd1: 0 < qsize

then

act1: queue :| queue′ ∈ 1 .. qsize− 1�� queuetokens \ {queue(1)}
∧ (∀i·i ∈ 1 .. qsize− 1⇒ queue′(i) = queue(i+ 1))

act2: queueitems := {queue(1)}�− queueitems
act3: queuetokens := queuetokens \ {queue(1)}
act4: qsize := qsize− 1

end

Unqueue =̂
any

qid
where

grd1: qid ∈ queuetokens
thm1: qsize 6= 0

then

act1:

queue :| queue′ ∈ 1 .. (qsize− 1)�� queuetokens \ {qid}
∧ (qsize = 1⇒ queue′ = ∅)
∧ (qsize > 1⇒
(∀i·i ∈ 1 .. queue−1(qid)− 1⇒ queue′(i) = queue(i))
∧
(∀j ·j ∈ queue−1(qid) + 1 .. qsize⇒ queue′(j − 1) = queue(j)))

act2: queueitems := {qid}�− queueitems
act3: queuetokens := queuetokens \ {qid}
act4: qsize := qsize− 1

end

end QueueA
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7.3 A Context that defines an abstract Queue datatype

context QueueType
Check extension|| extends

QueueContext
constants

ENQUEUE
DEQUEUE
DELETE

axioms
axm1: ENQUEUE ∈ QUEUE × TOKEN →QUEUE

axm2: ∀q, t·q ∈ QUEUE ∧ t ∈ TOKEN ∧ t /∈ ran(q)
⇒ card(ENQUEUE(q 7→ t)) = card(q) + 1

thm1: ∀q, t·q ∈ QUEUE ∧ t ∈ TOKEN ∧ t /∈ ran(q)
⇒ dom(ENQUEUE(q 7→ t)) = 1 .. card(q) + 1

axm3:
∀q, t, i·q ∈ QUEUE ∧ t /∈ ran(q)⇒
(i ∈ dom(q)⇒ ENQUEUE(q 7→ t)(i) = q(i))∧
(i = card(q) + 1⇒ ENQUEUE(q 7→ t)(i) = t)

axm4: DEQUEUE ∈ QUEUE 7→QUEUE

axm5: dom(DEQUEUE) = QUEUE \ {∅}

axm6:
∀q ·q ∈ QUEUE ∧ q 6= ∅
⇒
DEQUEUE(q) ∈ 1 .. card(q)− 1�� ran(q) \ {q(1)}

axm7:
∀q ·q ∈ dom(DEQUEUE)
⇒
card(DEQUEUE(q)) = card(q)− 1

thm2: ∀q ·q ∈ dom(DEQUEUE)⇒
dom(DEQUEUE(q)) = 1 .. card(q)− 1

axm8:
∀q, i·q ∈ dom(DEQUEUE) ∧ i ∈ dom(DEQUEUE(q))
⇒
DEQUEUE(q)(i) = q(i+ 1)

axm9: DELETE ∈ QUEUE × N1 7→QUEUE

axm10:
∀q, i · q ∈ QUEUE ∧ i ∈ dom(q)
⇒
DELETE(q 7→ i) ∈ 1 .. card(q)− 1�� ran(q) \ {q(i)}

axm11:
∀q, i·q ∈ QUEUE ∧ i ∈ dom(q)
⇔
q 7→ i ∈ dom(DELETE)

axm12:
∀q, i·q 7→ i ∈ dom(DELETE)
⇒
card(DELETE(q 7→ i)) = card(q)− 1

thm3:
∀q, i·q 7→ i ∈ dom(DELETE)
⇒
dom(DELETE(q 7→ i)) = 1 .. card(q)− 1

axm13:

∀q, i, j ·q 7→ i ∈ dom(DELETE)
⇒
(j < i ∧ j ∈ dom(q)⇒DELETE(q 7→ i)(j) = q(j))
∧
(j ≥ i ∧ j + 1 ∈ dom(q)⇒DELETE(q 7→ i)(j) = q(j + 1))

end
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7.4 A more abstract model

Machine QueueB is a refinement of QueueA using the abstract “methods” defined in QueueType. In fact,
QueueA could also be refined from QueueB, so the two machines are equivalent models.

machine QueueB
refines

QueueA
sees

QueueType
variables

queuetokens tokens for currently queued items
queue the queue of tokens
queueitems a function for fetching the item associated with a token
qsize current size of queue

invariants
inv1: queuetokens ⊆ TOKEN
inv2: queue ∈ QUEUE
inv3: qsize = card(queue)

inv4: queue ∈ 1 .. qsize�� queuetokens

thm1:
∀i, j ·i ∈ dom(queue) ∧ j ∈ dom(queue) ∧ i 6= j
⇒
queue(i) 6= queue(j)

thm2: queuetokens = ran(queue)

inv5: queueitems ∈ queuetokens→ ITEM

thm3: queue−1 ∈ queuetokens�� 1 .. qsize

thm4:
(∀qid·qid ∈ TOKEN \ queuetokens
⇒
ENQUEUE(queue 7→ qid) = queue�− {qsize+ 1 7→ qid})

thm5:
∀qid·qid ∈ queuetokens
⇒
queue 7→ queue−1(qid) ∈ dom(DELETE)

thm6:

qsize 6= 1
⇒
(∀qid, i·qid ∈ queuetokens ∧ i ∈ 1 .. (queue−1(qid)− 1)
⇒
(DELETE(queue 7→ queue−1(qid)))(i) = queue(i))

thm7:

qsize 6= 1
⇒
(∀qid, i·qid ∈ queuetokens ∧ i ∈ queue−1(qid) + 1 .. qsize
⇒
(DELETE(queue 7→ queue−1(qid)))(i− 1) = queue(i))

thm8:
∀qid·qid ∈ queuetokens
⇒
queue−1(qid) ≤ qsize

events
Initialisation =̂
then

act1: queuetokens := ∅
act2: queue := ∅
act3: qsize := 0

act4: queueitems := ∅
end



7.4. A MORE ABSTRACT MODEL 61

Enqueue =̂
refines

Enqueue

any
item
qid

where
grd1: item ∈ ITEM
grd2: qid ∈ TOKEN \ queuetokens

then
act1: queuetokens := queuetokens ∪ {qid}
act2: queue := ENQUEUE(queue 7→ qid)

act3: queueitems(qid) := item

act4: qsize := qsize+ 1
end

Dequeue =̂
refines

Dequeue
where

grd1: qsize 6= 0

then
act1: queue := DEQUEUE(queue)

act2: queueitems := {queue(1)}�− queueitems
act3: queuetokens := queuetokens \ {queue(1)}
act4: qsize := qsize− 1

end

Unqueue =̂
refines

Unqueue
any

qid
where

grd1: qid ∈ queuetokens
then

act1: queue := DELETE(queue 7→ queue−1(qid))

act2: queueitems := {qid}�− queueitems
act3: queuetokens := queuetokens \ {qid}
act4: qsize := qsize− 1

end

end QueueB
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7.5 Changing the data representation

In the following the monolithic queue of the preceding models by a “linked” queue. This models the
well-known linked structures familiar in software design and implementation.

In order to be able to demonstrate how the new model simulates the monolithic model the following
are required:

Relational composition: if r1 and r2 are two relations over the same set X then r1; r2 is the forward
composition of the two relations.

Todo: picture needed

Relational closure: is the union of all possible compositions of a relation with itself: r; r; . . . ; r. This
turns out to be finite and there are two versions of closure:

reflexive: in which the closure contains r0 by definition, and

irreflexive: in which r0 may be present, but is not present by definition.

Todo: much more discussion required

The context Iteration defines axioms and theorems for iteration and (irreflexive)closure.

context Iteration
extends

00 Queuetype

constants
iterate
iclosure

axioms
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axm1: iterate ∈ (TOKEN ↔ TOKEN)× N→ (TOKEN ↔ TOKEN)

axm2:
∀r·r ∈ TOKEN ↔ TOKEN
⇒
iterate(r 7→ 0) = TOKEN � id

axm3:
∀r, n·r ∈ TOKEN ↔ TOKEN ∧ n ∈ N1

⇒
iterate(r 7→ n) = iterate(r 7→ n− 1); r

thm1:
∀s·s ⊆ N ∧ 0 ∈ s
∧
(∀n·n ∈ s⇒ n+ 1 ∈ s)⇒ N ⊆ s

thm2:
∀r, n·r ∈ TOKEN ↔ TOKEN ∧ n ∈ N1

⇒
dom(iterate(r 7→ n)) ⊆ dom(r)

thm3:
∀r, n·r ∈ TOKEN ↔ TOKEN ∧ n ∈ N1

⇒
ran(iterate(r 7→ n)) ⊆ ran(r)

axm4: iclosure ∈ (TOKEN ↔ TOKEN)→ (TOKEN ↔ TOKEN)

axm5:
∀r·r ∈ TOKEN ↔ TOKEN
⇒
iclosure(r) = (

⋃
n·n ∈ N1|iterate(r 7→ n))

thm4:
∀r·r ∈ TOKEN ↔ TOKEN
⇒
dom(iclosure(r)) ⊆ dom(r)

end
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machine QueueR
refines

QueueB
sees

Iteration
variables

queuetokens tokens currently in queue
queueitems a function for fetching the item associated with a token
qsize current size of queue
qfirst first item, if any, in queue
qlast last item, if any, in queue
qnext link to next item, if any, in queue

invariants
inv1: qfirst ∈ TOKEN
inv2: qlast ∈ TOKEN
inv3: qsize 6= 0⇒ qfirst = queue(1)

inv4: qsize 6= 0⇒ qlast = queue(qsize)

inv5: qnext ∈ queuetokens 7� queuetokens

inv6: dom(qnext) = queuetokens \ {qlast}
inv7: qnext ∩ id = ∅
inv8: ran(qnext) = queuetokens \ {qfirst}
thm1: qsize = 1⇒ qfirst = qlast

inv9:
∀i·i ∈ 1 .. qsize ∧ i < qsize
⇒
qnext(queue(i)) = queue(i+ 1)

thm2: qsize ≥ 1⇒ iterate(qnext 7→ 0)[{qfirst}] = {queue(1)}

thm3:
qsize ≥ 1⇒ (∀n·n ∈ 1 .. qsize− 1 ∧ iterate(qnext 7→ n− 1)[{qfirst}] = {queue(n)}
⇒
iterate(qnext 7→ n)[{qfirst}] = {queue(n+ 1)})

thm4: qsize ≥ 1⇒ (∀n·n ∈ 1 .. qsize− 1⇒ iterate(qnext 7→ n− 1)[{qfirst}] = {queue(n)})
thm5: qsize ≥ 1⇒ iclosure(qnext)[{qfirst}] = queuetokens

Notation
math ascii
7� >+> partial injective function; injections are one-to-one relations

events
Initialisation =̂
then

act1: queuetokens := ∅
act2: qsize := 0

act3: queueitems := ∅
act4: qfirst :∈ TOKEN
act5: qlast :∈ TOKEN
act6: qnext := ∅

end

Enqueue0 =̂
refines

Enqueue
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any
item
qid

where
grd1: item ∈ ITEM
grd2: qid ∈ TOKEN \ queuetokens
grd3: qsize = 0

then
act1: queuetokens := queuetokens ∪ {qid}
act2: queueitems(qid) := item

act3: qsize := qsize+ 1

act4: qfirst := qid

act5: qlast := qid
end

Enqueue1 =̂
refines

Enqueue
any

item
qid

where
grd1: item ∈ ITEM
grd2: qid ∈ TOKEN \ queuetokens
grd3: qsize 6= 0

then
act1: queuetokens := queuetokens ∪ {qid}
act2: queueitems(qid) := item

act3: qsize := qsize+ 1

act4: qnext(qlast) := qid

act5: qlast := qid
end

Dequeue0 =̂
refines

Dequeue
where

grd1: qsize = 1

then
act1: qsize := qsize− 1

act2: queuetokens := queuetokens \ {qfirst}
act3: queueitems := {qfirst}�− queueitems
act4: qnext := {qfirst}�− qnext

end

Dequeue1 =̂
refines

Dequeue
where

grd1: qsize > 1
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then
act1: qsize := qsize− 1

act2: queuetokens := queuetokens \ {qfirst}
act3: queueitems := {qfirst}�− queueitems
act4: qfirst := qnext(qfirst)

act5: qnext := {qfirst}�− qnext
end

Unqueue0 =̂
refines

Unqueue
any

qid
where

grd1: qid ∈ queuetokens
grd2: qsize = 1

then
act1: queueitems := {qid}�− queueitems
act2: queuetokens := queuetokens \ {qid}
act3: qsize := qsize− 1

end

Unqueue1 =̂
refines

Unqueue
any

qid
where

grd1: qid ∈ queuetokens
grd2: qsize > 1

grd3: qid = qfirst
then

act1: queueitems := {qid}�− queueitems
act2: queuetokens := queuetokens \ {qid}
act3: qsize := qsize− 1

act4: qfirst := qnext(qid)

act5: qnext := {qid}�− qnext
end

Unqueue2 =̂
refines

Unqueue
any

qid
where

grd1: qid ∈ queuetokens
grd2: qsize > 1

grd3: qlast = qid
then
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act1: queueitems := {qid}�− queueitems
act2: queuetokens := queuetokens \ {qid}
act3: qsize := qsize− 1

act4: qlast := qnext−1(qid)

act5: qnext := qnext�− {qid}
end

Unqueue3 =̂
refines

Unqueue
any

qid
where

grd1: qid ∈ queuetokens
grd2: qsize > 1

grd3: qfirst 6= qid

grd4: qlast 6= qid
then

act1: queueitems := {qid}�− queueitems
act2: queuetokens := queuetokens \ {qid}
act3: qsize := qsize− 1

act4: qnext(qnext−1(qid)) := qnext(qid)
end

end QueueR

Notation
math ascii
r−1 r˜ inverse of r, that is r; r−1 ⊆ id. Note Rodin, even in marked-up form retains

the ˜

7.6 Further refinement

While the current refinement can be considered to be close to a concrete model that would map reason-
ably easily into a concrete implementation there is one construct that cannot be considered as concrete:
qnext−1 in Unqueue3. This models a backward pointer, but it is mathematics, and cannot be considered
as concrete.

QueueRR, a further refinement of QueueR produces a concrete modelling of qnext−1, which is easily
seen to be a loop that searches for the queue item that preceded queue(qid).

machine QueueRR
refines

QueueR
sees

Iteration
variables
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queuetokens tokens currently in queue
queueitems a function that maps tokens to items
qsize current size of queue
qfirst first item, if any, in queue
qlast last item, if any, in queue
qnext link to next item, if any, in queue
deleting Unqueue deletion in progress
qprev concrete version of queue
qidv copy of qid

invariants
inv1: deleting ∈ BOOL
inv2: qprev ∈ TOKEN
inv3: qidv ∈ TOKEN
inv4: deleting = TRUE⇒ qidv ∈ queuetokens
inv5: deleting = TRUE⇒ qidv 6= qfirst

inv6: deleting = TRUE⇒ qsize > 1

inv7: deleting = TRUE⇒ qprev ∈ dom(qnext)

inv8:
deleting = TRUE
⇒
qidv ∈ iclosure(qnext)[{qprev}]

events
Initialisation : extended =̂
then

act7: deleting := FALSE

act8: qprev :∈ TOKEN
act9: qidv :∈ TOKEN

end

Enqueue0 : extended =̂
refines

Enqueue0
any

where
grd4: deleting = FALSE

then

end

Enquire1 : extended =̂
refines

Enquire1
any

where
grd4: deleting = FALSE

then

end
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Dequque0 : extended =̂
refines

Dequque0
any

where
grd2: deleting = FALSE

then

end

Dequeue1 : extended =̂
refines

Dequque1
where

grd2: deleting = FALSE

then

end

Unqueue0 : extended =̂
refines

Unqueue0
any

where
grd3: deleting = FALSE

then

end

Unqueue1 : extended =̂
refines

Unqueue1
any

where

then

end

Unqueue2 =̂
refines

Unqueue2
where
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grd1: deleting = TRUE

grd2: qnext(qprev) = qidv

grd3: qlast = qidv
with

qid: qid = qidv

then
act1: queueitems := {qidv}�− queueitems
act2: queuetokens := queuetokens \ {qid}
act3: qsize := qsize− 1

act4: qlast := qprev

act5: qnext := qnext�− {qidv}
act6: deleting := FALSE

end

Unqueue3 =̂
refines

Unqueue3
where

grd1: deleting = TRUE

grd2: qnext(qprev) = qidv

grd3: qidv 6= qlast
with

qid qid = qidv
then

act1: queueitems := {qidv}�− queueitems
act2: queuetokens := queuetokens \ {qidv}
act3: qsize := qsize− 1

act4: qnext(qprev) := qnext(qidv)

act5: deleting := FALSE
end

UnqueueI =̂ Initialise for search
any

qid
where

grd1: qid ∈ queuetokens
grd2: qsize > 1

grd3: qfirst 6= qid

grd4: deleting = FALSE
then

act1: qprev := qfirst

act2: qidv := qid

act3: deleting := TRUE
end

UnqueueS =̂ Search for predecessor
status convergent
where
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grd1: deleting = TRUE

grd2: qnext(qprev) 6= qidv
then

act1: qprev := qnext(qprev)

end

variant
iclosure(qnext)[{qprev}]

end QueueRR
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Chapter 8

Lift System Modelling

Using layered refinements to develop a model for a lift system.

To learn the lessons of separation of concerns, and hence separation of functionality.

In this chapter we will build a small model of a lift system. Abstractly, a lift can have many incarnations,
although most people probably think of something like the arrangement that we will model: a transport
mechanism with doors and buttons, etc. You might be interested in [21]. Such lifts actually exist.

Because of the common reaction to the mention of a lift system, there is a strong temptation to introduce
too much detail too early and to produce a model that is very difficult to understand. This defeats
an important goal of modelling: to produce a model that can be reasoned about both informally and
formally.

We will develop the model of the lift system through a number of refinement layers.

8.1 Basic Lift

The first layer, modelled by the BasicLift machine, is concerned with the basic rules for list movement.

Basic Lift Attributes The first step will be to define the basis lift attributes:

What they are: distinguished informally by name;

What they do: how they modify the behaviour of a lift;

What are the parameters: what are the principal controlling parameters of the events;

When they run: the conditions under which the basic lift events can happen.

We will not be concerned with how these lift events might be controlled. At this level the only control
is imposed by the guards of the events. This will enable us to establish the conditions under which
these lift events are legal.

Of course, as this model develops there will be different manifestations of the basic events with strength-
ened guards and possibly extra parameters and actions.

LIFTS: there will be some finite set of lifts, modelled here by the finite set LIFT .

73
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STATUS: lifts will have a status. We conceive of three:

MOVING: the lift is active and moving;

STOPPED: the lift is active and stopped;

IDLE: the lift is inactive, but capable of becoming active.

FLOOR: there will be some finite set of floors for each lift. In this model it is assumed that all lifts
operate over the same set of floors. We will model the floors as a subrange 0 .. MAXFLOOR,
where MAXFLOOR is at least 1, giving distinct top and bottom floors.

Lift Context

context Lift_ctx
sets

DIRECTION
STATUS
LIFT

constants
MAXFLOOR
FLOOR
UP
DOWN
IDLE
STOPPED
MOVING
CHANGE

axioms
axm1: MAXFLOOR ∈ N1
axm2: FLOOR = 0 .. MAXFLOOR

axm3: finite LIFT

axm4: DIRECTION = {UP,DOWN}
axm5: UP 6= DOWN

axm6: partition(STATUS, {IDLE}, {STOPPED}, {MOV ING})
axm7: CHANGE ∈ DIRECTION ��DIRECTION

axm8: CHANGE = {UP 7→ DOWN,DOWN 7→ UP}
thm1: FLOOR 6= ∅
thm2: finite FLOOR

thm3: finite STATUS

thm4: finite DIRECTION

thm5: finite CHANGE
end
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Basic Lift machine

The BasicLift machine models basic lift movements, and establishes basic lift constraints.

• The behaviour is nondeterministic:

• there is no attempt to express any sort of lift control or scheduling
A discipline of lift direction is established:

– level 0: direction is UP

– level MAXFLOOR: direction is DOWN

– other levels: either direction is valid.

• There are no doors.

machine BasicLift
sees

Lift_ctx

variables
liftposition
liftstatus
liftdirection

invariants
inv1: liftposition ∈ LIFT → FLOOR

thm1: finite liftposition

inv2: liftstatus ∈ LIFT → STATUS

thm2: finite liftstatus

inv3: liftdirection ∈ LIFT →DIRECTION

thm3: finite liftdirection

inv4: ∀l · l ∈ LIFT ∧ liftposition(l) = 0
⇒ liftdirection(l) = UP

inv5: ∀l · l ∈ LIFT ∧ liftposition(l) =MAXFLOOR
⇒ liftdirection(l) = DOWN

thm4: ∀l · l ∈ LIFT ∧ liftdirection(l) = DOWN
⇒ liftposition(l) 6= 0

thm5: ∀l · l ∈ LIFT ∧ liftdirection(l) = UP
⇒ liftposition(l) 6=MAXFLOOR

events
Initialisation =̂
then

act1: liftposition := LIFT × {0}
act2: liftdirection := LIFT × {UP}
act3: liftstatus := LIFT × {IDLE}

end

Notation
math ascii
× ** A×B is the set of all maplets, a 7→ b, in which a ∈ A and b ∈ B
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IdleLift =̂ Idle lifts cannot move
any

lift
where

grd1: liftstatus(lift) STOPPED
then

act1: liftstatus(lift) := IDLE

end

ActivateLift =̂ Ready an Idle lift to enable moving
any

lift
where

grd1: liftstatus(lift) IDLE
then

act1: liftstatus(lift) := STOPPED

end

StartLift =̂ Models starting of a stopped lift, maintaining the previous direction
any

lift
where

grd1: liftstatus(lift) = STOPPED

then
act1: liftstatus(lift) :=MOV ING

end

ChangeDir =̂ Models the changing of direction of a STOPPED lift
any

lift
where

grd1: liftstatus(lift) = STOPPED

grd2: liftposition(lift) 6= 0

grd3: liftposition(lift) 6=MAXFLOOR
then

act1: liftdirection(lift) := CHANGE(liftdirection(lift))

end

MoveUp =̂ Models a lift moving up to the next floor and continuing to move
any

where
grd1: liftstatus(lift) =MOV ING

grd2: liftdirection(lift) = UP

grd3: liftposition(lift) 6=MAXFLOOR− 1
then

act1: liftposition(lift) := liftposition(lift) + 1

end
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MoveUpAndStop =̂ Models a lift moving up to the next floor and stopping
any

lift
where

grd1: liftstatus(lift) =MOV ING

grd2: liftdirection(lift) = UP
then

act1: liftposition(lift) := liftposition(lift) + 1

act2:

liftdirection :| liftdirection′ ∈ LIFT →DIRECTION
∧ (liftposition(lift) + 1 =MAXFLOOR
⇒
liftdirection′ = liftdirection�− {lift 7→ DOWN})
∧ (liftposition(lift) + 1 6=MAXFLOOR
⇒
liftdirection′ = liftdirection)

act3: (liftstatus(lift) := STOPPED
end

MoveDown =̂ Models a lift moving down to the next floor and continuing to move
any

lift
where

grd1: liftstatus(lift) =MOV ING

grd2: liftdirection(lift) = DOWN

grd3: liftposition(lift) 6= 1
then

act1: liftposition(lift) := liftposition(lift)− 1

end

MoveDownAndStop =̂ Models a lift moving down to the next floorand stopping
any

lift
where

grd1: liftstatus(lift) =MOV ING

grd2: liftdirection(lift) = DOWN
then

act1: liftposition(lift) := liftposition(lift)− 1

act2:

liftdirection :| liftdirection′ ∈ LIFT →DIRECTION
∧ (liftposition(lift) = 1
⇒
liftdirection′ = liftdirection�− {lift 7→ UP})
∧ (liftposition(lift) + 1 6= 1
⇒
liftdirection′ = liftdirection)

act3: (liftstatus(lift) := STOPPED
end

end BasicLift



78 CHAPTER 8. LIFT SYSTEM MODELLING

The above model behaves like a normal lift, but the behaviour is completely nondeterministic; there is
no way of influencing the behaviour. For example, there is no way to ensure a particular lift:

• moves;

• moves in a particular direction;

• stops at a particular floor.
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8.2 Adding Lift Doors

In the next layer we add lift doors, satisfying the following requirements:

Safety: a lift door may be open only if the lift is stopped;

Opening: while the lift movement is still nondeterministic we require that when a lift stops at a floor
then the door must open.

Door Context

context Doors_ctx
sets

DOORS
constants

CLOSED
OPENING
OPEN
CLOSING

axioms
axm1: partition(DOORS, {CLOSED}, {OPENING}, {OPEN}, {CLOSING})

end

Lift Plus Doors

machine LiftPlusDoors
refines

BasicLift
sees

Lift_ctx
Doors_ctx

variables
liftposition
liftstatus
liftdirection
liftdoorstatus

invariants
inv1: liftdoorstatus ∈ LIFT →DOORS

thm1: finite(liftdoorstatus)

inv2:
∀l · l ∈ LIFT ∧ liftstatus(l) ∈ {MOV ING, IDLE}
⇒
liftdoorstatus(l) = CLOSED

thm2:
∀l · l ∈ LIFT ∧ liftdoorstatus(l) ∈ {OPENING,OPEN}
⇒
liftstatus(l) = STOPPED

events
INITIALISATION : extended =̂
then

act4: liftdoorstatus := LIFT × {CLOSED}
end



80 CHAPTER 8. LIFT SYSTEM MODELLING

OpenLiftDoor =̂ Open lift door: lift must be STOPPED
any

lift
where

grd1: liftstatus(lift) = STOPPED

grd2: liftdoorstatus(lift) = OPENING
then

act1: liftdoorstatus(lift) := OPEN

end

CloseLiftDoor =̂
any

lift
where

grd1: liftdoorstatus(lift) = OPEN

then
act1: liftdoorstatus(lift) := CLOSED

end

IdleLift : extended =̂ Idle lifts cannot move
refines

IdleLift
where

grd2: liftdoorstatus(lift) = CLOSED

end

ActivateLift : extended =̂ Ready an Idle lift to enable moving
refines

ActivateLift
then

act2:

liftdoorstatus :| liftdoorstatus′ ∈ LIFT →DOORS ∧
((liftdoorstatus′ = liftdoorstatus�− {lift 7→ CLOSED})
∨
(liftdoorstatus′ = liftdoorstatus�− {lift 7→ OPENING}))

end

StartLift : extended =̂
refines

StartLift
where

grd2: liftdoorstatus(lift) = CLOSED

end

ChangeDir : extended =̂
refines

ChangeDir
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end

MoveUp : extended =̂ Models a lift moving up to the next floor and continuing to move
refines

MoveUp
end

MoveUpAndStop : extended =̂ Models a lift moving up to the next floor and stopping
refines

MoveUp
then

act4: liftdoorstatus(lift) := OPENING

end

MoveDown : extended =̂ Models a lift moving down to the next floor and continuing to move
refines

MoveDown
end

MoveDownAndStop : extended =̂ Models a lift moving down to the next floorand stopping
refines

MoveDownAndStop
then

act4: liftdoorstatus(lift) := OPENING

end

end LiftPlusDoors
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Adding Floor Doors

In this layer we add floor doors with the following requirements:

1. The floor door opens AFTER the lift door opens;

2. Floor doors may be OPEN only on the floor where a lift is stopped;

3. If a lift is MOVING then the floor door for that lift is CLOSED on all floors;

4. The floor door OPEN implies the lift door OPEN.

machine LiftPlusFloorDoors
refines

LiftPlusDoors
sees

Lift_ctx
Doors_ctx

variables
liftposition
liftstatus
liftdirection
liftdoorstatus
floordoorstatus

invariants
inv1: floordoorstatus ∈ LIFT → (FLOOR→DOORS)

thm1: finite(floordoorstatus)

inv2:
∀l·l ∈ LIFT ∧ liftdoorstatus(l) 6= OPEN
⇒
floordoorstatus(l)(liftposition(l)) = CLOSED

inv3:
∀l, f ·l ∈ LIFT ∧ f ∈ FLOOR \ {liftposition(l)}
⇒
floordoorstatus(l)(f) = CLOSED

thm2:
∀l, f ·l ∈ LIFT ∧ f ∈ FLOOR ∧ liftstatus(l) =MOV ING
⇒
floordoorstatus(l)(f) = CLOSED

thm3:
∀l·l ∈ LIFT ∧ floordoorstatus(l)(liftposition(l)) 6= CLOSED
⇒
liftdoorstatus(l) 6= CLOSED

inv4:
∀l · l ∈ LIFT ∧ floordoorstatus(l)(liftposition(l)) 6= CLOSED
⇒
liftstatus(l) = STOPPED

events
INITIALISATION : extended =̂
then

act5: floordoorstatus := LIFT × {FLOOR× {CLOSED}}
end

OpenFloorDoor =̂
any

lift
where
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grd1: liftstatus(lift) = STOPPED

grd2: liftdoorstatus(lift) = OPEN

grd3: floordoorstatus(lift)(liftposition(lift)) = OPENING
then

act1: floordoorstatus(lift) := floordoorstatus(lift)�− {liftposition(lift) 7→ OPEN}
end

CloseFloorDoor =̂
any

lift
where

grd1: floordoorstatus(lift)(liftposition(lift)) = OPEN

then
act1: floordoorstatus(lift) := floordoorstatus(lift)�− {liftposition(lift) 7→ CLOSED}

end

OpenLiftDoor : extended =̂
refines

OpenLiftDoor
where

then
act2: floordoorstatus(lift) := floordoorstatus(lift)�− {liftosition(lift) 7→ OPENING}

end

CloseLiftDoor : extended =̂
refines

CloseLiftDoor
where

grd2: floordoorstatus(lift)(liftposition(lift)) = CLOSED

end

StartLift : extended =̂
refines

StartLift
where

grd2: liftdoorstatus(lift) = CLOSED

end

ChangeDir : extended =̂
refines

ChangeDir
end

MoveUp : extended =̂ Models a lift moving up to the next floor
refines



84 CHAPTER 8. LIFT SYSTEM MODELLING

MoveUp
end

MoveUpAndStop : extended =̂ Models a lift moving up to the next floor and stopping
refines

MoveUpAndStop
end

MoveDown : extended =̂ Models a lift moving down to the next floor
refines

MoveDown
end

MoveDownAndStop : extended =̂ Models a lift moving down to the next floor and stopping
refines

MoveDownAndStop
end

end LiftPlusFloorDoors

8.3 Adding Buttons

We will now add buttons to enable lift passengers to signal their intentions: both inside the lifts and
on the floors of the building.

Buttons inside Lift

Buttons Context

context
sets

BUTTONS
constants

ON
OFF

axioms
axm1: partition(BUTTONS, {ON}, {OFF})

end

Lift Buttons machine

In this layer we model passenger requests for lifts to stop at particular floors, and the consequent
scheduling of the lift to stop at those floors. The following scheduling discipline is established:
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servicing of floor requests in direction of travel: a lift services all existing requests in its direc-
tion of travel;

idle if no requests: if a lift has no current requests it becomes idle.

To manage the scheduling a lift schedule is associated with each lift. The lift schedule is modelled by a
sets of floors for which there are requests. The lift schedule is more general than the requests recorded
by lift buttons, thus allowing the lift schedule to be used to schedule other requests, for example from
floor buttons on each floor (outside the lifts) by which passengers request lifts for travel in a particular
direction.

machine LiftButtons
refines

LiftPlusFloorDoors

sees
Lift_ctx
Doors_ctx
Buttons_ctx

variables
liftposition
liftstatus
liftdirection
liftdoorstatus
floordoorstatus
liftbuttons
liftschedule

invariants
inv1: liftbuttons ∈ LIFT → (FLOOR→BUTTONS)

inv2: liftschedule ∈ LIFT → P(FLOOR)
thm1: ∀l·l ∈ LIFT ⇒ finite(liftschedule(l))

inv3: ∀l, f ·l ∈ dom(liftbuttons) ∧ f ∈ dom(liftbuttons(l))
⇒ (liftbuttons(l)(f) = ON ⇒ f ∈ liftschedule(l))

inv4: ∀l·l ∈ LIFT ∧ liftposition(l) ∈ liftschedule(l)
⇒ liftstatus(l) = STOPPED

thm2: ∀l·l ∈ LIFT ∧ liftstatus(l) =MOV ING
⇒ liftposition(l) /∈ liftschedule(l)

events

INITIALISATION : extended =̂
then

act6: liftbuttons := LIFT × {FLOOR× {OFF}}
act7: liftschedule := LIFT × {∅}

end

SelectFloor =̂
any

lift
floor

where
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grd1: floor ∈ FLOOR
grd2: liftbuttons(lift)(floor) = OFF

grd3: liftposition(lift) 6= floor
then

act1: liftbuttons(lift) := liftbuttons(lift)�− {floor 7→ ON}
act2: liftschedule(lift) := liftschedule(lift) ∪ {floor}

end

MoveUp : extended =̂ Models a lift moving up to the next floor
refines

MoveUp
where

grd4: liftschedule(lift) 6= ∅
grd5: liftposition(lift) < max(liftschedule(lift))

grd6: liftposition(lift) + 1 /∈ liftschedule(lift)
end

MoveUpAndStop : extended =̂ Models a lift moving up to the next floor and stopping
refines

MoveUpAndStop
where

grd3: liftposition(lift) + 1 ∈ liftschedule(lift)
end

MoveDown : extended =̂ Models a lift moving down to the next floor
refines

MoveDown
where

grd4: liftschedule(lift) 6= ∅
grd5: liftposition(lift) > min(liftschedule(lift))

grd6: liftposition(lift)− 1 /∈ liftschedule(lift)

end

MoveDownAndStop : extended =̂ Models a lift moving down to the next floor and stopping
refines

MoveDownAndStop
where

grd3: liftposition(lift)− 1 ∈ liftschedule(lift)
end

ActivateLiftClosed =̂ Ready an Idle lift to enable moving, but leave doors CLOSED
refines

ActivateLift
any

lift
where
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grd1: liftstatus(lift) IDLE
grd2: liftchedule(lift) 6= ∅
grd3: liftposition(lift) /∈ liftschedule(lift)

then
act1: liftstatus(lift) := STOPPED

act2: liftdoorstatus := liftdoorstatus�− {lift 7→ CLOSED}
end

ActivateLiftOpen =̂ Ready an Idle lift to enable moving, but commence opening doors
refines

ActivateLift
any

lift
where

grd1: liftstatus(lift) IDLE
grd2: liftchedule(lift) 6= ∅
grd3: liftposition(lift) /∈ liftschedule(lift)

then
act1: liftstatus(lift) := STOPPED

act2: liftdoorstatus := liftdoorstatus�− {lift 7→ OPENING}
end

ExtendLiftSchedule =̂ Extend the lift schedule
any

lift
floor

where
grd1: lift ∈ LIFT
grd2: floor ∈ FLOOR
grd3: liftposition(lift) 6= floor

then
act1: liftschedule(lift) := liftschedule(lift) ∪ {floor}

end

ContractLiftSchedule =̂ Remove floor from liftschedule
any

lift
floor

where
grd1: lift ∈ LIFT
grd2: floor ∈ FLOOR
grd3: floor ∈ liftschedule(lift)
grd4: liftbuttons(lift)(floor) = OFF

then
act1: liftschedule(lift) := liftschedule(lift) \ {floor}

end

OpenFloorDoor : extended =̂
refines

OpenFloorDoor
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where
grd4: liftposition(lift) ∈ liftschedule(lift)

end

CloseFloorDoor : extended =̂
refines

CloseFloorDoor
then

act2: liftschedule(lift) := liftschedule(lift) \ liftposition(lift)
act3: liftbuttons(lift) := liftbuttons(lift)�− {liftposition(lift) 7→ OFF}

end

OpenLiftDoor : extended =̂
refines

OpenLiftDoor
where

grd3: liftposition(lift) ∈ liftschedule(lift)
end

CloseLiftDoor : extended =̂
refines

CloseLiftDoor
end

IdleLift : extended =̂ Idle lifts cannot move
refines

IdleLift
where

grd3: liftschedule(lift) = ∅
end

StartLift : extended =̂
refines

StartLift
where

grd3: liftschedule(lift) 6= ∅

grd4:
liftdirection(lift) = DOWN
⇒
liftposition(lift) > min(liftschedule(lift))

grd5:
liftdirection(lift) = UP
⇒
liftposition(lift) < max(liftschedule(lift))

grd6: liftposition(lift) /∈ liftschedule(lift)
end
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ChangeDir : extended =̂
refines

ChangeDir
where

grd4: liftschedule(lift) 6= ∅

grd5:
liftdirection(lift) = UP
⇒
liftposition(lift) > max(liftschedule(lift))

grd6:
liftdirection(lift) = DOWN
⇒
liftposition(lift) < min(liftschedule(lift))

end

end LiftButtons

Floor Buttons

The next layer refines LiftButtons to model floor requests and their scheduling.

This machine is left as an exercise for the reader.





Chapter 9

Proof Obligations

All proof obligations have a name and an abbreviation:
Id Name Needed to discharge
INV Invariant
FIS Feasibility
WD Well-definedness
GRD Guard
EQL Equal
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Chapter 10

Exercises

10.1 Relations and Functions

You need to gain familiarity with the various types of relations used in B, as these will dominate the
models you will be building. There are a confusingly large number of arrows that you will need to
master.

A relation is simply a set of pairings between two sets, for example between FRIENDS and their PHONE
numbers. We might have a set of such pairings in the set phone, which we might declare as

phone ∈ FRIENDS↔ PHONE

In Event-B a pair is denoted using the maps to symbol 7→, for example

phone = {jim 7→ 0456123456, lisa 7→ 0423456234, jim 7→ 0293984321, . . .}

Notice that relations can be many to many, there can be many friends mapping to telephone numbers,
but also each friend may have many telephone numbers.

Functions are many to one, meaning that there are many things, but each thing can map to only one
value. You’ve met functions in mathematics and maybe other places.

There are two basic sort of functions:

Partial functions: f ∈ X 7→ Y , a function that may not be defined everwhere in X, for example a
function between friend and their partner.

Total functions: f ∈ X → Y , a function that is defined everywher in X, for example the function
that maps each number to its square.

Having got that far we don’t leave it there. We further restrict functions as follows:

Injective functions: f ∈ X 7� Y , or f ∈ X � Y , one to one functions, where f(x) = f(y) only if
x = y, for example a function from person and their licence number, assuming that each person
is uniquely identified.

surjective function: f ∈ X 7� Y , or f ∈ X � Y , onto functions, where each value of Y is equal to
f(x) for some value of x in X.

Bijective functions: f ∈ X �� Y , one-to-one and onto functions.

It is important to recognise and use these relationships when developing a model.
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Exercises

Investigate the relationships for the following:

1. the sibling relationship between people;

2. the brother and sister relationships between people;

3. the relationship between people and their cars;

4. the relationship between people and registration plates;

5. relationships in student enrolment at UNSW;

6. the relationship between coin denominations and their value;

7. the relationship that describes the coins you have in your pocket;

8. relationships concerning products on a supermarket shelf;

9. the relationship between courses and lecturers.

More on Sets

These exercises are intended to familiarise you with set concepts and the way EventB uses sets to model
mathematical concepts. The tutorial also introduces EventB notation.

It is recommended that these exercise should be done in conjunction with the B Concise Summary.
Also, while notation needs to be understood and this involves semantics, it is recommended that the
reasoning about expressions should be conducted syntactically.

In this tutorial we also use single letters, which we will call jokers (from Classical-B), to represent arbi-
trary expressions and we utilise the notation of EventB proof theories (rules) for expressing properties.
Thus when we say, “let S be a set”, S is an expression, which in this case must be a set expression, for
example members ∪ {newmember}. You should not think of single letters as being variables.

A rule has the form P ⇒Q, stating that if we know P is true, then Q is true. For example,

A ⊆ B ∧ a ∈ A⇒ a ∈ B.

Notice that while rules look like predicates, the elements of the rule are not typed, for example in the
above rule A and B are both sets and their types must be compatible, otherwise A ⊆ B would not be
defined. The rules are higher order logic, not first-order as used in EventB machines.

The use of the joker and proof rule notation allows us to say things about arbitrary expressions so long
as they are well-typed.

Simple sets The basis of EventB is simple sets. A set is an unordered collection of things, without
multiplicity. The only property of sets is membership: we can evaluate x ∈ X, “x is a member of X”.

Finite sets have cardinality, card(S), the number of elements in S. Infinite sets do not have cardinality;
EventB does not have an infinity.
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Powersets From a simple set S we can form the powerset of S, written P(S), which is the set of all
subsets of S. We can define P(S) using set comprehension:

P(S) = {s | s ⊆ S}

We could also use a symmetric rule to express a property of powersets

p ∈ P(P )⇒ p ⊆ P

p ⊆ P ⇒ p ∈ P(P )

Also,

S ∈ P(S)

Products Given two sets S and T we can form the product of S and T , sometimes called the Cartesian
product denoted S × T . The product is the set of ordered pairs taken respectively from S and T :

S × T = {x, y | x ∈ S ∧ y ∈ T}

A rule for products is

a 7→ b ∈ A×B⇒ a ∈ A ∧ b ∈ EventB

The following sets are used in the exercises:

NAMES = {Jack, Jill};
PHONE = {123, 456, 789}

10. In this question you will be dealing with products, or sets of pairs. Instead of writing a pair
as (a, b), which is probably what you would normally do, write them as a 7→ b, where 7→ is
pronounced “maps to”.

j) What is NAMES × PHONE?
k) What might it represent (model)?
l) What is card(NAMES × PHONE)?

m) What is card(NAMES × {})?
n) What is P(S)?
o) Given card(S) = N , what is card(P(S))?
p) What is card(P(NAMES × PHONE))?
q) What does card(P(NAMES × PHONE)) give you?
r) Is NAMES × PHONE a function?
s) Give a functional subset.
t) Give a total functional subset.
u) If a subset S is described as a partial functional set, which of the following is correct?

i. S is not a total functional set.
ii. S might not be a total functional set

All of the following classes of functions may be total or not total.
v) Give a injective functional subset.
w) Give a surjective functional subset.
x) Give a (total) bijective functional subset.
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Relations Any subset of X ×Y is called a (many-to-many) relation. The set of all relations between
X and Y is denotedX↔Y . Since each relation is an element ofX×Y , it follows thatX↔Y = P(X×Y ).
This could be expressed by a rule:

r ∈ X ↔ Y ⇒ r ∈ P(X × Y )

Domain and range Given a relation r, where r ∈ X↔Y then the domain of r, dom(r), is the subset
of X for which a relation is defined. The range of r, ran(r) is the subset of Y onto which the dom(r)
is mapped. Here are some rules:

r ∈ X ↔ Y ⇒ dom(r) ⊆ X ∧ ran(r) ⊆ Y

r ∈ X ↔ Y ∧ x 7→ y ∈ r⇒ x ∈ dom(r) ∧ y ∈ ran(r)

11. Given phonebook ∈ NAMES↔ PHONE,

a) Give some examples of phonebook.

b) Give NAMES↔ PHONE.

c) What is card(NAMES↔ PHONE)?

Relational inverse The relational inverse of r, r−1, is the relation produced by inverting the map-
pings within r

r ∈ X ↔ Y ∧ x 7→ y ∈ r⇒ y 7→ x ∈ r−1

Domain and range restriction Domain (range) restriction restricts the domain (range) of a relation.
s � r is the relation r domain restricted to s. This gives a subset of the relation r whose domain is a
subset of s:

r ∈ X ↔ Y ∧ s ⊆ X ⇒ s� r ⊆ r ∧ dom(s� r) ⊆ s

r� s is the relation r range restricted to s. This gives a subset of the relation r whose range is a subset
of s:

r ∈ X ↔ Y ∧ s ⊆ Y ⇒ r � s ⊆ r ∧ ran(r � s) ⊆ s

Relational image The relational image r[s] give the image of a set s under the relation r: the
mapping of all elements of s according to the maplets in r:

r[s] = ran(s� r)

Relational image is the counterpart for relations of functional application for functions; the former being
many-to-many and the latter many-to-one.

12. Given phonebook = {Jack 7→ 123, Jack 7→ 789, Jill 7→ 456, Jill 7→ 789}

a) What is dom(phonebook)?

b) What is ran(phonebook)?

c) What is phonebook �− {Jack 7→ 123}?
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d) What is {Jack}� phonebook?

e) What is {Jack}�− phonebook?

f) What is phonebook � {123, 789}?

g) What is phonebook �− {123, 789}?

h) What is phonebook[{Jack}]?

Functions Functions are many-to-one relations. X 7→Y is the set of all partial functions formed from
X and Y . A many-to-one relation is one where each element of the domain maps to only one value in
the range, as illustrated by the following rule:

f ∈ X 7→ Y ∧ x 7→ u ∈ f ∧ x 7→ v⇒ u = v

Partial functions are the most general form of function. For every x in the domain of a function f
(x ∈ dom(f)) we can write f(x) to obtain the value x maps to under f , that is

f ∈ X 7→ Y ∧ x 7→ y⇒ f(x) = y

13. a) Give NAMES 7→ PHONE.

b) What is card(NAMES 7→ PHONE)?

Total functions X → Y is the set of all total functions formed from X and Y . Total functions are
(partial) functions with maximal domains:

f ∈ X → Y ⇒ dom(f) = X

14. a) Give NAMES→ PHONE.

b) What is card(NAMES→ PHONE)?

Partial injective functions X 7� Y is the set of all partial, injective functions formed from X and
Y . An injective function is a one-to-one relation:

f ∈ X 7� Y ∧ u 7→ y ∈ f ∧ v 7→ y ∈ f ⇒ u = v

15. a) Give NAMES 7� PHONE.

b) What is card(NAMES 7� PHONE)?

Total injective functions X � Y is the set of all total, injective functions formed from X and Y .
A total injective function is both total and injective:

f ∈ X � Y ⇒ f ∈ X → Y ∧ f ∈ X 7� Y

16. a) Give NAMES� PHONE.

b) What is card(NAMES� PHONE)?
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Surjective functions X 7� Y is the set of all partial, surjective functions formed from X and Y . A
surjective function is a functional onto relations; a function whose range is maximal:

f ∈ X 7� Y => ran(f) = Y

17. a) Give NAMES 7� PHONE.

b) What is card(NAMES 7� PHONE)?

Total surjective functions X � Y is the set of all total, surjective functions formed from X and
Y . A total surjective function is both total and surjective:

f ∈ X � Y ⇒ f ∈ X → Y ∧ f ∈ X 7→ Y

18. a) Give NAMES� PHONE.

b) What is card(NAMES� PHONE)?

Bijective functions X��Y is the set of all (total) injective and surjective functions formed from X
and Y . A bijective function is total, injective and surjective.

f ∈ X �� Y ⇒ f ∈ f → Y ∧ f ∈ f 7� Y ∧ f ∈ f 7� Y

19. a) Give NAMES�� PHONE.

b) What is card(NAMES�� PHONE)?

c) Why is a partial bijection unnecessary?

20. Suppose STUDENTS is the set of all students that could be enrolled in a particular course.
Students pass a course if they gain at least 50 marks in the final examination. Given a function
results ∈ STUDENTS 7→ N, that yields the examination result for a particular student, specify

a) the set of students that pass;

b) the set of students that fail.

21. If we were modelling a taxi fleet company we might have three variables, drivers, taxis and
assigned constrained by

drivers ∈ P(DRIV ERS)
taxis ∈ P(TAXIS)

assigned ∈ drivers 7� taxis

where DRIV ERS is the set of possible drivers, TAXIS is the set of possible taxis, drivers is
the set of drivers working for the company, taxis is the set of taxis owned by the company, and
assigned is a function recording the assignment of drivers to taxis.

The arrow inj denotes a partial injective function. An injective function is a one-to-one function.

a) Why is assigned a function?

b) Why is assigned a partial function?

c) Why is assigned an injective function?

d) Specify the drivers who are currently assigned.
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e) Specify the drivers who are currently unassigned.

f) Specify the taxis that are currently assigned.

g) Specify the taxis that are currently unassigned.

22. Are the following rules correct or incorrect?

a) f ∈ X → Y ⇒ f ∈ X 7→ Y

b) f ∈ X 7� Y ⇒ f ∈ X 7→ Y

c) f ∈ X 7� Y ⇒ f ∈ X → Y

d) f ∈ X � Y ⇒ f ∈ X → Y

e) f ∈ X � Y ⇒ f ∈ X 7→ Y

f) f ∈ X 7� Y ⇒ f ∈ X 7→ Y

g) f ∈ X 7� Y ⇒ f ∈ X → Y

h) f ∈ X � Y ⇒ f ∈ X → Y

i) f ∈ X � Y ⇒ f ∈ X 7→ Y

j) f ∈ X 7→ Y ⇒ dom(f) ⊂ X
k) f ∈ X → Y ⇒ ran(f) = Y

l) f ∈ X 7→ Y ∧ x ∈ dom(f)⇒ f [{x}] = {f(x)}
m) (r−1)−1 = r

n) r ∈ X ↔ Y ⇒ dom(r−1) = ran(r)

o) r ∈ X ↔ Y ⇒ ran(r−1) = dom(r)

p) r ∈ X ↔ Y ⇒ ran(r) ∈ Y
q) r ∈ X ↔ Y ⇒ ran(r) ⊆ Y
r) r ∈ X ↔ Y ⇒ ran(r) ∈ P(Y )

23. union(S) is the generalised union of the elements of S, that is, if S is a set of sets, then union(S)
is the union of all of the sets that are contained in S. What is union({})?

24. inter(S) is the generalised intersection of the elements of S, that is, if S is a set of sets, then
inter(S) is the intersection of all of the sets that are contained in S. What is inter({})?

25. Two subsets of a set S are said to be disjoint if and only if they have no elements in common.
Define a binary relation disjoint that holds between a pair of subsets of S exactly when they are
disjoint.

26. A set of subsets of S is said to be pairwise disjoint if and only if every pair of distinct sets in it is
disjoint (in the sense of (c)). A partition of a set S is a pairwise disjoint set of subsets of S whose
generalised union is equal to S.

a) Define the set of all partitions of S.

b) Which of the subsets of {a, b} are partitions of {a, b}?



100 CHAPTER 10. EXERCISES

10.2 A Simple Bank Machine

The objective of this tutorial exercise is to develop EventB models. In all cases the resulting machines
should be introduced into the Rodin Toolkit, analyzed, proof obligations generated, the autoprover run
and any remaining undischarged proof obligations inspected carefully. In many cases it would be a good
idea to animate the machine.

1. A simple bank Produce a model, consisting of SimpleBank_ctx and SimpleBank machines, of
a very simple bank with the following requirements. Follow the English very carefully.

accounts the bank customers are represented by accounts. Having obtained an account a cus-
tomer may use the other operations supported by the bank.

balance the bank needs to maintain a balance for all accounts.

NewAccount an operation by which a customer obtains an account identifier. Account identi-
fiers are allocated from a pool (set) of identifiers maintained by the bank.

Deposit an operation to add an amount to an account balance.

WithDraw an operation withdraw an amount from an account. Customers cannot withdraw
more than the balance in their account.

Balance an enquiry operation for a customer to obtain the balance in their account.

Holdings an operation that returns the total sum of all the balances held by the bank. Clearly
this should be a privileged operation not able to be run by anyone, but we will keep things
simple

Transfer an operation that transfers an amount of money from one bank account to another.

Note: the balance and all other money amounts can be represented by natural numbers.
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10.3 Supermarket Model

The objective of this set of tutorial exercises is to develop a model of a simple supermarket.

The Supermarket_ctx context

This context models the “things” that you find in a supermarket.

context Supermarket_ctx
sets

TROLLEY
PRODUCT

constants
MAXPRICE
SHELF
PRICE
Milk
Cheese
Cereal
BASKET

axioms
axm1: MAXPRICE ∈ N
axm2: PRICE = 0 .. MAXPRICE

axm3: SHELF = PRODUCT 7→ N1

axm4: partition(PRODUCT, (Milk), (Cheese), (Cereal)

axm5: BASKET = PRODUCT 7→ N1

end

Explain the sets and constants you see in the above machine.

The Supermarket machine

For the supermarket we want to model the products in the supermarket, the shelf containing the
products, the trolleys available for customers, the customers with trolleys and products in those trolleys.

Important: all products on the shelves of the supermarket and in the trolleys must have a price.

Here is part of the Supermarket machine.

machine Supermarket
sees

Supermarket_ctx
variables

shelf
trolleys
products
price
customers
reorderlevel
reorder
topay
stock

invariants
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inv1: shelf ∈ SHELF
inv2: trolleys ⊆ TROLLEY
inv3: products ⊆ PRODUCT
inv4: price ∈ products→ PRICE

inv5: products = dom(price)

inv6: dom(shelf) = products

inv7: customers ∈ trolleys→BASKET

inv8: ∀t·t ∈ dom(customers)
⇒ dom(customers(t)) ⊆ products

inv9: reorderlevel ∈ products 7→ N1

inv10: reorder ⊆ products
inv11: topay ∈ trolleys 7→ N
inv12: stock ∈ products→ N

events
INITIALISATION =̂
. . .

end

. . .

end Supermarket

The above machine is intended to model:

• products on the shelf of the supermarket

• products in customer trolleys

• total stock of products: note that stock includes all products that are still in the supermarket,
either on the shelf, in customers’ trolleys or perhaps in reserve somewhere else in the supermarket.

• checkout

• stock alert when stock level drops below some minimum requirement

Complete the Initialisation and add the following events:

Setprice set the price of a product ;

AddStock add some amount of product to the supermarket stock ;

AddProductShelf add some amount of product to the shelf of the supermarket;

GetTrolley get a vacant trolley ;

AddProductTrolley take some amount of product on shelf and add to trolley ;

RemProductTrolley take some amount of product from trolley and return to shelf.

SetMinStock set the minimum amount of product to have in stock;

CheckOut checkout product from trolley ;
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Pay pay for products in trolley ;

ReturnTrolley return empty trolley ;

ReStock indicate that stock of product has fallen below minimum stock level.

Refinement of Supermarket Machine

Refine the Supermarket machine, especially showing two methods of implementing CheckOut: one
allowing multiple product items to be processed and the other processing one product items at a time.

Events that don’t change can be simply inherited using the mysterious first menu on the event line in
Rodin.
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Solutions

11.1 Relations and Functions

1. the sibling relationship between people;
sibling is clearly a many-to-many relation, that is it is simply a relation and can’t be further
strengthened: sibling ∈ people↔ people

2. the brother and sister relationships between people;
brother and sister are similar to sibling, indeed each is a subset of sibling : brother ⊆ sibling,
sister ⊆ sibling.

3. the relationship between people and their cars;
People may have many cars, so again this is simply a relation.

4. the relationship between people and registration plates;
Registrations are beteeen a registration number and a person (or maybe an identified group of
people), so this is functional and what’s more it is injective, that is one-to-one.

5. relationships in student enrolment at UNSW;
The relation between a student identifier and a student is an injective function.

6. the relationship between coin denominations and their value;
Again, an injective function.

7. the relationship that describes the coins you have in your pocket;
You probably have many coins in your pocket, and possibly many of the same coin denominations,
so the relation is a function between the coin denomination and the number you have in your
pocket. Incidentally, this is known as a bag.

8. relationships concerning products on a supermarket shelf;
Similar to the preceding question: the relation is functional, between products and the number of
each product on the shelf.

9. the relationship between courses and lecturers.
Generally, this will only be a relation.

10. In this question you will be dealing with products, or sets of pairs. Instead of writing a pair
as (a, b), which is probably what you would normally do, write them as a 7→ b, where 7→ is
pronounced “maps to”.

105
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j) What is NAMES × PHONE?
NAMES × PHONE = {

Jack 7→ 123, Jack 7→ 456, Jack 7→ 789,
Jill 7→ 123, Jill 7→ 456, Jill 7→ 789

}
k) What might it represent (model)? It might model entries in a phone book.

l) What is card(NAMES × PHONE)? 6 = card(NAMES)× card(PHONE) = 2× 3

m) What is card(NAMES × {})? 0; card(NAMES × {}) = {}
n) What is P(S)? P(S), the powerset of S is the set of all subsets of S.

o) Given card(S) = N , what is card(P(S))? card(P(S)) = 2N

p) What is card(P(NAMES × PHONE))?
card(P(NAMES × PHONE)) = 2card(NAMES×PHONE) = 26 = 64

q) What does card(P(NAMES × PHONE)) give you? It gives you all possible mappings
between elements of NAMES and elements of PHONE, ie it gives you all possible config-
urations of your phone book.

r) Is NAMES × PHONE a function? No, it’s many to many.

s) Give a functional subset. {Jack 7→ 123}
t) Give a total functional subset. {Jack 7→ 123, Jill 7→ 123}
u) If a subset S is described as a partial functional set, which of the following is correct?

i. S is not a total functional set.
ii. S might not be a total functional set

ii) is correct. A partial function may happen to be total. If X 7→ Y is the set of all partial
functions from X to Y and X → Y is the set of all total functions from X to Y , then
X → Y ⊆ X 7→ Y

All of the following classes of functions may be total or not total.

v) Give a injective functional subset. {Jack 7→ 123, Jill 7→ 456}
w) Give a surjective functional subset. There is no such function, since any set of mappings

from a set of 2 elements to a set of 3 elements could not be functional

x) Give a (total) bijective functional subset. No such function, for the same reason as in (n).

11. Any subset of X×Y is called a (many to many) relation. X↔Y is the set of all relations formed
from X and Y . That is X ↔ Y = P(X × Y ).

Given phonebook ∈ NAMES↔ PHONE,

a) Give some examples of phonebook. {Jack 7→ 123}, {Jack 7→ 123, Jill 7→ 123, Jack 7→
456, Jill 7→ 789}

b) Give NAMES↔ PHONE.

NAMES↔ PHONE = {
{},
{Jack 7→ 123}, {Jack 7→ 456}, {Jack 7→ 789}, {Jill 7→ 123}, {Jill 7→ 456}, {Jill 7→ 789},
{Jack 7→ 123, Jack 7→ 456}, {Jack 7→ 123, Jack 7→ 789}, {Jack 7→ 456, Jack 7→ 789},
{Jill 7→ 123, Jill 7→ 456}, {Jill 7→ 123, Jill 7→ 789}, {Jill 7→ 456, Jill 7→ 789},
{Jack 7→ 123, Jill 7→ 123}, {Jack 7→ 123, Jill 7→ 456}, {Jack 7→ 123, Jill 7→ 789},
{Jack 7→ 456, Jill 7→ 123}, {Jack 7→ 456, Jill 7→ 456}, {Jack 7→ 456, Jill 7→ 789},
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{Jack 7→ 789, Jill 7→ 123}, {Jack 7→ 789, Jill 7→ 456}, {Jack 7→ 789, Jill 7→ 789},
{Jack 7→ 123, Jack 7→ 456, Jack 7→ 789},
{Jack 7→ 123, Jack 7→ 456, Jill 7→ 123}, {Jack 7→ 123, Jack 7→ 789, Jill 7→ 123},
{Jack 7→ 456, Jack 7→ 789, Jill 7→ 123}, {Jack 7→ 123, Jack 7→ 456, Jill 7→ 456},
{Jack 7→ 123, Jack 7→ 789, Jill 7→ 456}, {Jack 7→ 456, Jack 7→ 789, Jill 7→ 456},
{Jack 7→ 123, Jack 7→ 456, Jill 7→ 789}, {Jack 7→ 123, Jack 7→ 789, Jill 7→ 789},
{Jack 7→ 456, Jack 7→ 789, Jill 7→ 789}, {Jill 7→ 123, Jill 7→ 456, Jack 7→ 123},
{Jill 7→ 123, Jill 7→ 789, Jack 7→ 123}, {Jill 7→ 456, Jill 7→ 789, Jack 7→ 123},
{Jill 7→ 123, Jill 7→ 456, Jack 7→ 456}, {Jill 7→ 123, Jill 7→ 789, Jack 7→ 456},
{Jill 7→ 456, Jill 7→ 789, Jack 7→ 456}, {Jill 7→ 123, Jill 7→ 456, Jack 7→ 789},
{Jill 7→ 123, Jill 7→ 789, Jack 7→ 789}, {Jill 7→ 456, Jill 7→ 789, Jack 7→ 789},
{Jill 7→ 123, Jill 7→ 456, Jill 7→ 789},
{Jack 7→ 123, Jack 7→ 456, Jack 7→ 789, Jill 7→ 123},
{Jack 7→ 123, Jack 7→ 456, Jack 7→ 789, Jill 7→ 456},
{Jack 7→ 123, Jack 7→ 456, Jack 7→ 789, Jill 7→ 789},
{Jack 7→ 123, Jack 7→ 456, Jill 7→ 123, Jill 7→ 456},
{Jack 7→ 123, Jack 7→ 456, Jill 7→ 123, Jill 7→ 789},
{Jack 7→ 123, Jack 7→ 456, Jill 7→ 456, Jill 7→ 789},
{Jack 7→ 123, Jack 7→ 789, Jill 7→ 123, Jill 7→ 456},
{Jack 7→ 123, Jack 7→ 789, Jill 7→ 123, Jill 7→ 789},
{Jack 7→ 123, Jack 7→ 789, Jill 7→ 456, Jill 7→ 789},
{Jack 7→ 456, Jack 7→ 789, Jill 7→ 123, Jill 7→ 456},
{Jack 7→ 456, Jack 7→ 789, Jill 7→ 123, Jill 7→ 789},
{Jack 7→ 456, Jack 7→ 789, Jill 7→ 456, Jill 7→ 789},
{Jill 7→ 123, Jill 7→ 456, Jill 7→ 789, Jack 7→ 123},
{Jill 7→ 123, Jill 7→ 456, Jill 7→ 789, Jack 7→ 456},
{Jill 7→ 123, Jill 7→ 456, Jill 7→ 789, Jack 7→ 789},
{Jack 7→ 123, Jack 7→ 456, Jack 7→ 789, Jill 7→ 123, Jill 7→ 456},
{Jack 7→ 123, Jack 7→ 456, Jack 7→ 789, Jill 7→ 123, Jill 7→ 789},
{Jack 7→ 123, Jack 7→ 456, Jack 7→ 789, Jill 7→ 456, Jill 7→ 789},
{Jack 7→ 123, Jack 7→ 456, Jill 7→ 123, Jill 7→ 456, Jill 7→ 789, },
{Jack 7→ 123, Jack 7→ 789, Jill 7→ 123, Jill 7→ 456, Jill 7→ 789, },
{Jack 7→ 456, Jack 7→ 789, Jill 7→ 123, Jill 7→ 456, Jill 7→ 789, },
{Jack 7→ 123, Jack 7→ 456, Jack 7→ 789, Jill 7→ 123, Jill 7→ 456, Jill 7→ 789}
}

c) What is card(NAMES ↔ PHONE)? card(NAMES ↔ PHONE) = card(P(NAMES ×
PHONE)) = 64

12. X 7→ Y is the set of all partial functions formed from X and Y .

a) Give NAMES 7→ PHONE.

NAMES 7→ PHONE = {
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{},
{Jack 7→ 123}, {Jack 7→ 456}, {Jack 7→ 789}, {Jill 7→ 123}, {Jill 7→ 456}, {Jill 7→ 789},
{Jack 7→ 123, Jill 7→ 123}, {Jack 7→ 123, Jill 7→ 456}, {Jack 7→ 123, Jill 7→ 789},
{Jack 7→ 456, Jill 7→ 123}, {Jack 7→ 456, Jill 7→ 456}, {Jack 7→ 456, Jill 7→ 789},
{Jack 7→ 789, Jill 7→ 123}, {Jack 7→ 789, Jill 7→ 456}, {Jack 7→ 789, Jill 7→ 789}
}

b) What is card(NAMES 7→ PHONE)? 16

13. X → Y is the set of all total functions formed from X and Y .

a) Give NAMES→ PHONE.

NAMES→ PHONE = {
{Jack 7→ 123, Jill 7→ 123}, {Jack 7→ 123, Jill 7→ 456}, {Jack 7→ 123, Jill 7→ 789},
{Jack 7→ 456, Jill 7→ 123}, {Jack 7→ 456, Jill 7→ 456}, {Jack 7→ 456, Jill 7→ 789},
{Jack 7→ 789, Jill 7→ 123}, {Jack 7→ 789, Jill 7→ 456}, {Jack 7→ 789, Jill 7→ 789}
}

b) What is card(NAMES→ PHONE)? 9 = 3× 3

14. X 7� Y is the set of all partial, injective functions formed from X and Y .

a) Give NAMES 7� PHONE.

NAMES 7� PHONE = {
{},
{Jack 7→ 123}, {Jack 7→ 456}, {Jack 7→ 789}, {Jill 7→ 123}, {Jill 7→ 456}, {Jill 7→ 789},
{Jack 7→ 123, Jill 7→ 456}, {Jack 7→ 123, Jill 7→ 789},
{Jack 7→ 456, Jill 7→ 123}, {Jack 7→ 456, Jill 7→ 789},
{Jack 7→ 789, Jill 7→ 123}, {Jack 7→ 789, Jill 7→ 456}
}

b) What is card(NAMES 7� PHONE)? 13 = 6 + 6 + 1

15. X � Y is the set of all total, injective functions formed from X and Y .

a) Give NAMES� PHONE.

NAMES� PHONE = {
{Jack 7→ 123, Jill 7→ 456}, {Jack 7→ 123, Jill 7→ 789},
{Jack 7→ 456, Jill 7→ 123}, {Jack 7→ 456, Jill 7→ 789},
{Jack 7→ 789, Jill 7→ 123}, {Jack 7→ 789, Jill 7→ 456}
}

b) What is card(NAMES� PHONE)? 6

16. X 7� Y is the set of all partial, surjective functions formed from X and Y .
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a) Give NAMES 7� PHONE.
NAMES 7� PHONE = {}

b) What is card(NAMES 7� PHONE)? 0

17. X � Y is the set of all total, surjective functions formed from X and Y .

a) Give NAMES� PHONE.
NAMES� PHONE = {}

b) What is card(NAMES� PHONE)? 0

18. X �� Y is the set of all (total) bijective functions formed from X and Y .

a) Give NAMES�� PHONE.
NAMES�� PHONE = {}

b) What is card(NAMES�� PHONE)? 0

c) Why is a partial bijection unnecessary? A partial bijection X �7→ Y can be represented by a
total injections Y �X.

19. This set exercises some important relational operators.
Given phone = {Jack 7→ 123, Jack 7→ 789, Jill 7→ 456, Jill 7→ 789}

a) What is dom(phone)? {Jack, Jill}.
b) What is ran(phone)? {123, 456, 789}.
c) What is phone�− {Jack 7→ 123}? {Jack 7→ 123, Jill 7→ 456, Jill 7→ 789}.
d) What is {Jack}� phone? {Jack 7→ 123, Jack 7→ 789}.
e) What is {Jack}�− phone? {Jill 7→ 456, Jill 7→ 789}.
f) What is phone� {123, 789}? {Jack 7→ 123, Jack 7→ 789, Jill 7→ 789}.
g) What is phone�− {123, 789}? {Jill 7→ 456}.
h) What is phone[{Jack}]? {123, 789}.

20. Students pass a subject if they gain at least 50 marks in the final examination. Given a function
results : STUDENTS 7→ N, that yields the examination result for a particular student, specify

a) the set of students that pass: dom(results� {n | n ∈ N ∧ n ≥ 50})

{s | s ∈ dom(results) ∧ results(s) ≥ 50}

or

dom(results� {n | n ∈ N ∧ n ≥ 50})
b) the set of students that fail.

{s | s ∈ dom(results) ∧ results(s) < 50}

21. If we were modelling a taxi fleet company we might have three variables, drivers, taxis and
assigned constrained by

drivers : PDRIVERS

taxis : PTAXIS

assigned : drivers 7� taxis

where drivers is the set of drivers working for the company, taxis is the set of taxis owned by the
company, and assigned is a function recording the assignment of drivers to taxis.
The arrow � denotes a partial injective function. An injective function is a one-to-one function.
Notice that the inverse of an injective function is also an injective function. In general, of course,
the inverse of a function is not necessarily even a function.
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a) Why is assigned a function? It is a function because a driver would be assigned to at most
one taxi.

b) Why is assigned a partial function?
It is partial because at any time not all drivers would necessarily be assigned to a taxi.

c) Why is assigned an injective function?
It is injective because a taxi would be assigned to at most one driver.

d) Specify the drivers who are currently assigned.
dom(assigned)

e) Specify the drivers who are currently unassigned.
drivers− dom(assigned)

f) Specify the taxis that are currently assigned.
ran(assigned)

g) Specify the taxis that are currently unassigned.
taxis− ran(assigned)

22. Are the following rules correct or incorrect?

a) f ∈ X → Y ⇒ f ∈ X 7→ Y
Correct, a total function is a partial function.

b) f ∈ X 7� Y ⇒ f ∈ X 7→ Y
Correct, a partial injection is a partial function.

c) f ∈ X 7� Y ⇒ f ∈ X → Y
Incorrect, a partial injection is not a total function.

d) f ∈ X � Y ⇒ f ∈ X → Y
Correct, a total injection is a total function.

e) f ∈ X � Y ⇒ f ∈ X 7→ Y
Correct, a total injection is a partial function.

f) f ∈ X 7� Y ⇒ f ∈ X 7→ Y
Correct, a partial surjection is a partial function.

g) f ∈ X 7� Y ⇒ f ∈ X → Y
Incorrect, a partial surjection is not a total function.

h) f ∈ X � Y ⇒ f ∈ X → Y
Correct, a total surjection is a total function.

i) f ∈ X � Y ⇒ f ∈ X 7→ Y
Correct, a total surjection is a partial function.

j) f ∈ X 7→ Y ⇒ dom(f) ⊂ X
Incorrect.

k) f ∈ X → Y ⇒ ran(f) = Y
Incorrect.

l) f ∈ X 7→ Y ∧ x ∈ dom(f)⇒ f [{x}] = {f(x)}
Correct.

m) (r−1)−1 = r
Correct.

n) r ∈ X ↔ Y ⇒ dom(r−1) = ran(r)
Correct.

o) r ∈ X ↔ Y ⇒ ran(r−1) = dom(r)
Correct.
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p) r ∈ X ↔ Y ⇒ ran(r) ∈ Y
Incorrect.

q) r ∈ X ↔ Y ⇒ ran(r) ⊆ Y
Correct.

r) r ∈ X ↔ Y ⇒ ran(r) ∈ P(Y )
Correct.

23. The generalized union of a set of subsets of X contains those elements of X that are in at least
one of the subsets. Define a function union : PPX → PX that maps a set of subsets of X to its
generalized union. What is union∅?

a) union(U) = { x : X|∃u · (u ∈ U ∧ x ∈ u) }
b) union(∅) = { x | x ∈ X ∧ ∃u · (u ∈ ∅ ∧ x ∈ u) }

= { x | x ∈ X ∧ false }
= ∅

To shed a bit more light on this, it is clear that union({x}) = {x} for any x ∈ X. But,
union({x}) = union({x},∅) = union({x}) ∪ union(∅). It follows that union(∅) must be the
empty set.

24. The generalized intersection of a set of subsets of X contains just those elements of X that are
in all the subsets. Define a function interPPX → PX that maps a set of subsets of X to its
generalized intersection. What is inter∅?

a) interU = { x | x ∈ X ∧ ∀u · (u ∈ U ⇒ x ∈ u) }
b) inter∅ = { x : X | ∀u · (u ∈ ∅⇒ x ∈ u) }

= { x : X|> }
= X

To shed a bit more light on inter(∅), it is clear that inter({{x}}) = {x}. Now consider inter(P, {x}),
where P is a list of sets. Then, inter(P, {x}) = inter({P}) ∩ {x}. Now take the case where the
list P is empty, {x} = inter(∅) ∩ {x} for all x ∈ X. Therefore, inter(∅) must be X.

25. Two subsets of a set X are said to be disjoint if and only if they have no elements in common.
Define a binary relation disjoint that holds between a pair of subsets of X exactly when they are
disjoint.

disjoint(u,w) = u ∩ w = ∅

26. A set of subsets of X is said to be pairwise disjoint if and only if every pair of distinct sets in it
is disjoint (in the sense of (c)). A partition of a set X is a pairwise disjoint set of subsets of X
whose generalized union is equal to X.

a) Define the set of all partitions of X.
partitionX = { w | w ∈ P(P(X)) ∧ union(w) = X ∧ ∀(u1, u2) · (u1 ∈ w ∧ u2 ∈ w⇒ u1 6=
u2) ∧ disjoint(u1, u2) }

b) Which of the subsets of {a, b} are partitions of {a, b}?
{{a}, {b}}, {∅, {a}, {b}}, {{a, b}}, {∅, {a, b}}.





Appendix A

Models

A.1 Coffee Club

machine CoffeeClub

variables
piggybank denotes a supply of money for the coffee club.

invariants
inv1: piggybank ∈ N piggybank must be a natural number, that is, a non-zero integer

events

Initialisation =̂
then

act1: piggybank := 0

end

FeedBank =̂
any

amount
where

grd1: amount ∈ N1
then

act1: piggybank := piggybank + amount

end

RobBank =̂
any

amount
where

grd1: amount : N1
grd2: amount ≤ piggybank There must be enough in the piggybank

then
act1: piggybank := piggybank − amount
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end

end CoffeeClub

context MembersContext
sets

MEMBER
axioms

axm1: finite(MEMBER)

end

machine MemberShip
refines

CoffeeClub
sees

MemberShip

variables
piggybank
members
accounts
coffeeprice

invariants
inv1: piggybank ∈ N
inv2: members ⊆MEMBER each member has unique id
inv3: accounts ∈ members→ N each member has an account
inv4: coffeeprice ∈ N1 price of a cup of coffee

events
Initialisation : extended =̂
then

act2: members := ∅ empty set of members
act3: accounts := ∅ empty set of accounts
act4: coffeeprice :∈ N1 initial coffee price set to arbitrary non-zero value

end

SetPrice =̂
any

amount
where

grd1: amount ∈ N1
then

act1: coffeeprice := amount

end

NewMember =̂
any

member
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where
grd1: member ∈MEMBER \members choose an unused element of MEMBER

then
act1: members := members ∪ {member}
act2: accounts(member) := 0

end

Contribute =̂
any

amount
member

where
grd1: amount ∈ N1
grd2: member ∈ members

then
act1: accounts(member) := accounts(member) + amount

act2: piggybank := piggybank + amount
end

BuyCoffee =̂
any

member
where

grd1: member ∈ members
grd2: accounts(member) ≥ coffeeprice

then
act1: accounts(member) := accounts(member)− coffeeprice

end

FeedBank : extended =̂
refines

FeedBank
any

where

then

end

RobBank : extended =̂
refines

RobBank
any

where

then

end
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end MemberShip
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A.2 SquareRoot

context SquareRoot_ctx
constants

num
axioms

axm1: num ∈ N
end

machine SquareRoot
sees

SquareRoot_ctx
variables

sqrt
invariants

inv1: sqrt ∈ N
events
Initialisation =̂
then

act1: sqrt :∈ N
end

SquareRoot =̂
then

act1:
sqrt :| (sqrt′ ∈ N
∧ sqrt′ ∗ sqrt′ ≤ num
∧ num < (sqrt′ + 1) ∗ (sqrt′ + 1))

end

end SquareRoot

machine SquareRootR1
refines

SquareRoot
sees

SquareRoot_ctx
variables

sgrt
low
high

invariants
inv1: low ∈ N
inv2: high ∈ N
inv3: low + 1 ≤ high
inv4: low ∗ low ≤ num
inv5: low < high ∗ high

variant
high− low

events
Initialisation =̂
then
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act1: sqrt :∈ N
act2: low :| low′ ∈ N ∧ low′ ∗ low′ ≤ num
act3: high :| high′ ∈ N ∧ num < high′ ∗ high′

end

SquareRoot =̂
refines

SquareRoot
where

grd1: low + 1 = high

then
act1: sqrt := low

end

Improve =̂

status convergent
any

l
h

where
grd1: low + 1 6= high

grd2: l ∈ N ∧ low ≤ l ∧ l ∗ l ≤ num
grd3: h ∈ N ∧ h ≤ high ∧ num < h ∗ h
grd4: l + 1 ≤ h
grd5: h− 1 < high− low

then
act1: low, high := l, h

end

end SquareRootR1

machine SquareRootR2
refines

SquareRootR1
sees

SquareRoot_ctx
variables

sgrt
low
high

invariants
inv1: low ∈ N
inv2: high ∈ N
inv3: low + 1 ≤ high
inv4: low ∗ low ≤ num
inv5: low < high ∗ high

variant
high− low

events
Initialisation : extended =̂
then

end
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SquareRoot : extended =̂
refines

SquareRoot
where

then

end

Improve1 =̂
refines

Improve
any

m
where

grd1: low + 1 6= high

grd2: m ∈ N
grd3: low < m ∧m < high

grd4: m ∗m ≤ num m is a better value for low
with

l: l = m

h: h = high
then

act1: low := m

end

Improve2 =̂
refines

Improve
any

m
where

grd1: low + 1 6= high

grd2: m ∈ N
grd3: low < m ∧m < high

grd4: m ∗m > num m is a better value for high
with

l: l = low

h: h = m
then

act1: high := m

end

end SquareRootR2

machine SquareRootR3
refines

SquareRootR2
sees

SquareRoot_ctx
variables
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sqrt
low
high

invariants

thm1: (∀n · n ∈ N
⇒ (∃m ·m ∈ N ∧ (n = 2 ∗m ∨ n = 2 ∗m+ 1)))

n is even or odd

thm2: (∀n · n ∈ N⇒ n < n+ 1 ∗ (n+ 1))
variant
high− low

events
Initialisation : extended =̂
then

end

SquareRoot : extended =̂
refines

SquareRoot
where

then

end

Improve1 =̂
refines

Improve
any

m
where

grd1: low + 1 6= high

grd2: m = (low + high)/2

grd3: m ∗m ≤ num m is a better value for low
then

act1: low := m

end

Improve2 =̂
refines

Improve
any

m
where

grd1: low + 1 6= high

grd2: m = (low + high)/2

grd3: (m ∗m > num m is a better value for high
then

act1: high := m

end

end SquareRootR3

machine SquareRootR4
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refines
SquareRootR3

sees
SquareRoot_ctx

variables
sqrt
low
high
mid

invariants
inv1: low ∈ N
inv2: high ∈ N
inv3: low + 1 ≤ high
inv4: low ∗ low ≤ num
inv5: num < high ∗ high
inv6: mid = (low + high)/2

variant
high− low

events
Initialisation =̂
then

act1: sqrt :∈ N
act2: low := 0

act3: high := num+ 1

act4: mid := (num+ 1)/2
end

SquareRoot =̂
refines

SquareRoot
where

grd1: low + 1 = high

then
act1: sqrt := low

end

Improve1 =̂
refines

Improve
any

where
grd1: low + 1 6= high

grd2: mid ∗mid ≤ num mid is a better value for low
with

m: m = mid

then
act1: low := mid

act2: mid := (mid+ high)/2
end

Improve2 =̂
refines

Improve
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any

where
grd1: low + 1 6= high

grd2: (mid ∗mid > num mid is a better value for high
with

m: m = mid

then
act1: high := mid

act2: mid := (low +mid)/2
end

end SquareRootR4



Appendix B

Proof Obligations

All proof obligations have a name and an abbreviation:
Id Name Needed to discharge
INV Invariant
FIS Feasibility
WD Well-definedness
GRD Guard
EQL Equal
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Appendix C

Event-B Concise Summary

Each construct will be given in its presentation form, as displayed in the Rodin toolkit, followed by the
ASCII form that is used for input to Rodin.

In the following: P , Q and R denote predicates;
x and y denote single variables;
z denotes a single or comma-separated list of variables;
p denotes a pattern of variables, possibly including 7→ and parentheses;
S and T denote set expressions;
U denotes a set of sets;
m and n denote integer expressions;
f and g denote functions;
r denotes a relation;
E and F denote expressions;
E,F is a recursive pattern, ie it matches e1, e2 and also e1, e2, e3 . . . ; similarly for x, y;

Freeness: The meta-predicate ¬free(z, E) means that none of the variables in z occur free in E. This
meta-predicate is defined recursively on the structure of E, but that will not be done here explicitly.
The base cases are: ¬free(z,∀z · P ⇒Q), ¬free(z,∃z · P ∧Q), ¬free(z, {z · P | F}), ¬free(z, λz · P |E),
and free(z, z).

In the following the statement that P must constrain z means that the type of z must be at least
inferrable from P .

In the following, parentheses are used to show syntactic structure; they may of course be omitted when
there is no confusion.

Note: Event-B has a formal syntax and this summary does not attempt to describe that syntax.
What it attempts to do is to explain Event-B constructs. Some words like expression collide with the
formal syntax. Where a syntactical entity is intended the word will appear in italics, e.g. expression,
predicate.

The base cases are:¬free(z, (∀z · P ), ¬free(z, (∃z · P ), ¬free(z, {z · P | F}), ¬free(z, λz · P |E), and
free(z, z)

In the following:

• the statement “P must constrain z” means that the type of z must be at least inferrable from P .

• parentheses are used to show syntactic structure; they may of course be omitted when there is no
confusion.
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C.1 Predicates

1. False : ⊥ false

2. True : > true

3. Conjunction : P ∧Q P & Q
Left associative.

4. Disjunction : P ∨Q P or Q
Left associative.

5. Implication : P ⇒Q P => Q
Non-associative: this means that P⇒Q⇒R
must be parenthesised or an error will be di-
agnosed.

6. Equivalence : P ⇔Q P <=> Q .
P ⇐⇒ Q = P ⇒Q ∧Q⇒ P
Non-associative: this means that P⇔Q⇔R
must be parenthesised or an error will be di-
agnosed.

7. Negation : ¬P not P

8. Universal quantification :
(∀z ·P ⇒Q) (!z.P => Q)
Strictly, ∀z ·P , but usually an implication.
For all values of z, satisfying P , Q is satis-
fied.
The types of z must be inferrable from the
predicate P .

9. Existential quantification :
(∃z ·P ∧Q) (#z.P & Q)
Strictly, ∃z ·P , but usually a conjunction.
There exist values of z, satisfying P , that sat-
isfy Q.
The predicate P must be inferrable from the
predicate P .

10. Equality : E = F E = F

11. Inequality : E 6= F E /= F

C.2 Sets

1. Singleton set : {E} {E}

2. Set enumeration : {E,F} {E, F}
See note on the pattern E,F at top of sum-
mary.

3. Empty set : ∅ {}

4. Set comprehension : { z ·P | F }
{ z . P | F }
General form: the set of all values of F for
all values of z that satisfy the predicate P . P
must constrain the variables in z.

5. Set comprehension : { F | P } { F | P }
Special form: the set of all values of F that
satisfy the predicate P . In this case the set
of bound variables z are all the free variables
in F .
{ F | P } = { z ·P | F }, where z is all the
variables in F .

6. Set comprehension : { x | P } { x | P }
A special case of item 5: the set of all values
of x that satisfy the predicate P .
{ x | P } = { x·P | x }

7. Union : S ∪ T S \/ T

8. Intersection : S ∩ T S /\ T

9. Difference : S \ T S \ T
S\T = {x | x ∈ S ∧ x /∈ T}

10. Ordered pair : E 7→ F E |-> F .
E 7→ F 6= (E,F )
Left associative.
In all places where an ordered pair is re-
quired, E 7→ F must be used. E,F will not
be accepted as an ordered pair, it is always a
list. {x, y ·P | x 7→ y} illustrates the different
usage.

11. Cartesian product : S × T S ** T
S × T = {x 7→ y | x ∈ S ∧ y ∈ T}
Left-associative.

12. Powerset : P(S) POW(S)
P(S) = {s | s ⊆ S}

13. Non-empty subsets : P1(S) POW1(S)
P1(S) = P(S)\{∅}

14. Cardinality : card(S) card(S)
Defined only for finite(S).

15. Generalized union : union(U) union(U)
The union of all the elements of U .
∀U ·U ∈ P(P(S))⇒
union(U) = {x | x ∈ S ∧ ∃s·s ∈ U ∧ x ∈ s}
where ¬free(x, s, U)
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16. Generalized intersection : inter(U)

inter(U)
The intersection of all the elements of U .
U 6= ∅,
∀U ·U ∈ P(P(S))⇒
inter(U) = {x | x ∈ S ∧ ∀s·s ∈ U ⇒ x ∈ s}
where ¬free(x, s, U)

17. Quantified union :
∪z ·P | S UNION z.P | S
P must constrain the variables in z.
∀z ·P ⇒ S ⊆ T ⇒
∪(z ·P | E) = {x | x ∈ T ∧ ∃z ·P ∧ x ∈ S}
where ¬free(x, z, T ), ¬free(x, P ),
¬free(x, S), ¬free(x, z)

18. Quantified intersection :
∩z ·P | S INTER z.P | S
P must constrain the variables in z,
{z | P} 6= ∅,
(∀z ·(P ⇒ S ⊆ T ))⇒
∩z ·P | S = {x | x ∈ T ∧ (∀z ·P ⇒ x ∈ S)}
where ¬free(x, z), ¬free(x, T ), ¬free(x, P ),
¬free(x, S).

Set predicates

1. Set membership : E ∈ S E : S

2. Set non-membership : E /∈ S E /: S

3. Subset : S ⊆ T S <: T

4. Not a subset : S 6⊆ T S /<: T

5. Proper subset : S ⊂ T S <<: T

6. Not a proper subset : s 6⊂ t S /<<: T

7. Finite set : finite(S) finite(S)
finite(S)⇔ S is finite.

8. Partition : partition(S, x, y) partition(S,x,y)
x and y partition the set S, ie S =
x ∪ y ∧ x ∩ y = ∅

Specialised use for enumerated sets:
partition(S, {A}, {B}, {C}).
S = {A,B,C} ∧A 6= B ∧B 6= C ∧ C 6= A

C.3 BOOL and bool

BOOL is the enumerated set: {FALSE,TRUE},
and bool is defined on a predicate P as follows:

1. P is provable: bool(P ) = TRUE

2. ¬P is provable: bool(P ) = FALSE

C.4 Numbers

The following is based on the set of integers, the
set of natural numbers (non-negative integers), and
the set of positive (non-zero) natural numbers.

1. The set of integer numbers Z INT

2. The set of natural numbers N NAT

3. The set of positive natural numbers N1 NAT1
N1 = N\{0}

4. Minimum min(S) min(S)
S ⊂ Z and finite(S) or S must have a lower
bound.

5. Maximum max(S) max(S)
S ⊂ Z and finite(S) or S must have an upper
bound.

6. Sum m+ n m + n

7. Difference m− n m - n
n ≤ m

8. Product m× n m * n

9. Quotient m/n m / n
n 6= 0

10. Remainder mmod n m mod n
n 6= 0

11. Interval m .. n m .. n
m .. n = { i | m ≤ i ∧ i ≤ n }

Number predicates

1. Greater m > n m > n

2. Less m < n m < n

3. Greater or equal m ≥ n m >= n

4. Less or equal m ≤ n m <= n
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C.5 Relations

A relation is a set of ordered pairs; a many to many
mapping.

1. Relations S↔ T S <-> T
S↔ T = P(S × T )
Associativity: relations are right associative:
r ∈ X ↔ Y ↔ Z = r ∈ X ↔ (Y ↔ Z).

2. Domain dom(r) dom(r)
∀r·r ∈ S↔ T ⇒
dom(r) = {x·(∃y ·x 7→ y ∈ r)}

3. Range ran(r) ran(r)
∀r·r ∈ S↔ T ⇒
ran(r) = {y ·(∃x·x 7→ y ∈ r)}

4. Total relation S←↔ T S <<-> T
if r ∈ S←↔ T then dom(r) = S

5. Surjective relation S↔→ T S <->> T
if r ∈ S↔→ T then ran(r) = T

6. Total surjective relation S↔↔ T S <<->> T
if r ∈ S←↔ T then dom(r) = S and ran(r) =
T

7. Forward composition p ; q p ; q
∀p, q ·p ∈ S↔ T ∧ q ∈ T ↔ U ⇒
p ; q = {x 7→ y | (∃z ·x 7→ z ∈ p∧ z 7→ y ∈ q)}

8. Backward composition p ◦ q p circ q
p ◦ q = q ; p

9. Identity id id
S � id = {x 7→ x | x ∈ S}.
id is generic and the set S is inferred from
the context.

10. Domain restriction S � r S <| r
S � r = {x 7→ y | x 7→ y ∈ r ∧ x ∈ S}.

11. Domain subtraction S �− r S <<| r
S �− r = {x 7→ y | x 7→ y ∈ r ∧ x /∈ S}.

12. Range restriction r � T r |> T
r � T = {x 7→ y | x 7→ y ∈ r ∧ y ∈ T}.

13. Range subtraction r �− T r |>> T
r �− T = {x 7→ y | y ∈ r ∧ y /∈ T}.

14. Inverse r−1 r˜
r−1 = {y 7→ x | x 7→ y ∈ r}.

15. Relational image r[S] r[S]
r[S] = {y | ∃x·x ∈ S ∧ x 7→ y ∈ r}.

16. Overriding r1 �− r2 r1 <+ r2
r1 �− r2 = r2 ∪ (dom(r2)�− r1).

17. Direct product p⊗ q p >< q
p⊗ q = {x 7→ (y 7→ z) | x 7→ y ∈ p ∧ x 7→ z ∈
q)}.

18. Parallel product p ‖ q p || q
p ‖ q = {x, y,m, n·x 7→ m ∈ p ∧ y 7→ n ∈ q |
(x 7→ y) 7→ (m 7→ n)}.

19. Projection prj1 prj1
prj1 is generic.
(S × T ) � prj1 = {(x 7→ y) 7→ x | x 7→ y ∈
S × T}.

20. Projection prj2 prj2
prj2 is generic.
(S × T ) � prj2 = {(x 7→ y) 7→ y | x 7→ y ∈
S × T}.

Iteration and Closure

Iteration and closure are important functions on
relations that are not currently part of the kernel
Event-B language. They can be defined in a Con-
text, but not polymorphically.

Note: iteration and irreflexive closure will be im-
plemented in a proposed extension of the math-
ematical language. The operators will be non-
associative.

1. Iteration rn
r ∈ S↔ S⇒ r0 = S � id∧rn+1 = r ; rn.
Note: to avoid inconsistency S should be the
finite base set for r, ie the smallest set for
which all r ∈ S↔ S.
Could be defined as a function iterate(r 7→
n).

2. Reflexive Closure r∗
r∗ = ∪n·n ∈ N | rn.
Could be defined as a function rclosure(r).
Note: r0 ⊆ r∗.

3. Irreflexive Closure r+
r+ = ∪n·n ∈ N1 | rn.
Could be defined as a function iclosure(r).
Note: r0 6⊆ r+ by default, but may be present
depending on r.
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Functions

A function is a relation with the restriction that
each element of the domain is related to a unique
element in the range; a many to one mapping.

1. Partial functions S 7→ T S +-> T
S 7→ T = {r·r ∈ S↔ T ∧ r−1 ; r ⊆ T � id}.

2. Total functions S→ T S --> T
S→ T = {f ·f ∈ S 7→ T ∧ dom(f) = S}.

3. Partial injections S 7� T S >+> T
S 7� T = {f ·f ∈ S 7→ T ∧ f−1 ∈ T 7→ S}.
One-to-one relations.

4. Total injections S� T S >-> T
S� T = S 7� T ∩ S→ T .

5. Partial surjections S 7� T S +->> T
S 7� T = {f ·f ∈ S 7→ T ∧ ran(f) = T}.
Onto relations.

6. Total surjections S� T S –>> T
S� T = S 7� T ∩ S→ T .

7. Bijections S�� T S >->> T
S�� T = S� T ∩ S� T .
One-to-one and onto relations.

8. Lambda abstraction
(λp·P | E) (%p.P|E)
P must constrain the variables in p.
(λp·P | E) = {z ·P | p 7→ E}, where z is a
list of variables that appear in the pattern p.

9. Function application f(E) f(E)
E 7→ y ∈ f ⇒ E ∈ dom(f) ∧ f ∈ X 7→ Y ,
where type(f) = P(X × Y .
Note: in Event-B, relations and functions
only ever have one argument, but that argu-
ment may be a pair or tuple, hence f(E 7→
F ) f(E |-> F)
f(E,F ) is never valid.

C.6 Models

1. Contexts contain sets and constants used by
other contexts or machines.

CONTEXT Identifier
EXTENDS Machine_Identifiers
SETS Identifiers
CONSTANTS Identifiers
AXIOMS Predicates
THEOREMS Predicates
END

2. Machines contain events.

MACHINE Identifier
REFINES Machine_Identifiers
SEES Context_Identifiers
VARIABLES Identifiers
INVARIANT Predicates
THEOREMS Predicates
VARIANT Expression
EVENTS Events
END

Events

Event_name
REFINES Event_identifiers
ANY Identifiers
WHERE Predicates
WITH Witnesses
THEN Actions
END

There is one distinguished event named INITIAL-
ISATION used to initialise the variables of a ma-
chine, thus establishing the invariant.

Actions

Actions are used to change the state of a machine.
There may be multiple actions, but they take effect
concurrently, that is, in parallel. The semantics of
events are defined in terms of substitutions. The
substitution [G]P defines a predicate obtained by
replacing the values of the variables in P accord-
ing to the action G. General substitutions are not
available in the Event-B language.

Note on concurrency: any single variable can be
modified in at most one action, otherwise the effect
of the actions would, in general, be inconsistent.

1. skip, the null action
skip denotes the empty set of actions for an
event.
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2. Simple assignment action x := E x := E
:= = “becomes equal to”: replace free occur-
rences of x by E.

3. Choice from set x :∈ S x :: S
:∈ = “becomes in”: arbitrarily choose a value
from the set S.

4. Choice by predicate z :| P z :| P
:| = “becomes such that”: arbitrarily choose
values for the variable in z that satisfy the
predicate P . Within P , x refers to the value
of the variable x before the action and x′

refers to the value of the variable after the
action.

5. Functional override f(x) := E f(x) := E
Substitute the value E for the expression f
at point x.
This is a shorthand:
f(x) := E = f := f �− {x 7→ E}.

6. Multiple action
x, y := E,F x,y := E,F
Concurrent assignment of the values E and
F to the variables x and y, respectively. This
is equivalent multiple single actions.

Acknowledgement: Jean-Raymond Abrial, Laurent Voisin and Ian Hayes have all given valuable
feedback and corrections at various stages of the evolution of this summary.
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Rodin

D.1 The Rodin platform
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