
Class and State machine Refinement in UML-B

Mar Yah Said, Michael Butler, and Colin Snook

ECS, University of Southampton, Southampton, SO17 1BJ, UK
(mys05r,mjb,cfs)@ecs.soton.ac.uk

Abstract. UML-B is a ’UML-like’ graphical front end for Event-B. It adds sup-
port for object oriented modeling concepts while visually retaining the Event-B
modeling concepts. In the continuity of the work on UML-B, we strengthen its
refinement concepts. Development in Event-B is done through refinements of an
abstract model. Since Event-B is reflected in UML-B, the abstraction-refinement
concepts must also be catered for in UML-B. UML-B introduced the new concept
of refinement, where model complexity is managed by introducing more detailed
versions of a machine. We extend this refinement concept by introducing the no-
tion of refined classes and refined state machines. A refined class refines a class
diagram and a refined state machine refines a state machine. The UML-B draw-
ing tool and Event-B translator are extended to support the refinement concepts.
A case study of an auto teller machine (ATM) is presented to demonstrate the
notion of refined classes and refined state machines.
Keywords: Visual modeling languages, Formal specification, UML, Event-B,
Refinement.

1 Introduction

The UML-B [1] is a graphical formal modeling notation that has some resemblance
with UML [2, 3] and is based on Event-B [4] which is a new variant of classical B. The
UML-B notation is supported by UML-B tool which is a plug-in extension feature to
the Rodin Event-B verification tool [6, 11]. The existing UML-B tool enhanced the old
UML-B [12] which is a profile of UML that defines a subset and specialisation of UML.
The old UML-B is based on the classical B instead of Event-B.

A development in classical B or Event-B is done through refinement. Refinement
[8, 9] is a technique which is used to relate the abstract model of a software system
to another model that is more concrete while maintaining the same properties of the
abstract model. Refinement is an important technique for managing the complexity of
a system being developed. It is important to have an abstract model of a system so that
the core functions of a system can be focused on and validated. Further refinements
of the abstract model allows the modeler to focus on different aspects of the system at
different abstraction levels.

For a development in classical B or Event-B, at the most abstract model, it is re-
quired to specify an invariant that defines the static properties of the data being mod-
eled. This invariant must be preserved by all the events of the model. Each refinement
will add further invariants relating the abstract model and the refined model. Refine-
ment in classical B or Event-B is done by refining both its state and its events. This is



essentially done by extending the list of state variables (possibly suppressing some of
them) and by refining each abstract event into corresponding concrete version.

There are two main differences between Event-B and classical B with regards to
refinement of events. In Event-B, several events may refine an abstract event whereas
in classical B, only one event can refine an abstract event. The other difference is that
in Event-B, we may have new events that refine skip whereas in classical B, this is not
allowed.

Another difference between classical B and Event-B is that Event-B distinguishes
between contexts and machines. A context contains definitions and properties of types
and constants. A machine contains state variables, invariants and events that update the
variables. A machine may see several contexts.

The previous versions of UML-B did not support refinement. Current work is fo-
cused on ways of performing refinement in UML-B. The main contributions of our work
are introducing a notion of refined classes and inherited attributes which is described in
Section 3 and a notion of refined state machines and refined states which is described
in Section 4. The other contribution is introducing a technique of event movement in
Section 5.

Section 3 describes the technique of performing refinement using the notion of re-
fined classes and inherited attributes which includes adding new classes to a class di-
agram in a refinement and adding new attributes and associations to refined classes.
Section 4 describes the technique of elaborating refined states into sub-states and the
transitions elaboration technique. Section 5 describes the technique of moving events
from a class in an abstract machine into a new class in a refinement.

Before the technical details of the contributions are describes, we give a background
of UML-B and the generated Event-B in Section 2 that outlines the existing features of
UML-B that are relevant. Section 6 presents the ATM case study using the refinement
techniques describes in Sections 3, 4 and 5. Section 7 concludes the paper.

2 Background of UML-B and Generated Event-B

UML-B provides four kind of diagrams. They are package, context, class and state
machine diagrams. A package diagram is a top-level diagram that shows the structure
and relationships between components (machines and contexts) in a project. A context
is described in a context diagram which is similar to class diagram but has only constant
data and structured types. A machine is specified by a class diagram and state machine
diagram(s) representing data structures that may be changed by events or transitions.
Events may be attached to classes in the class diagram. Events can also be represented
by the transitions on a state machine diagram. Further descriptions are focused on the
class and state machine diagrams as the rest of the sections mostly concern these.

A class diagram may contain classes. Each class may have attributes, associations,
events and state machines. An attribute defines a data value of an instance of a class.
An association is a special case of an attribute that defines a relationships between two
classes. An event defines operations of a class and involves modification to some or
all the attributes of a class. A state machine defines the behavior of a class in terms of



transitions between discrete states. The UML-B tool generates Event-B models corre-
sponding to a UML-B development and the Rodin tool is then used to discharge proof
obligations associated with the generated Event-B models. Each UML-B context gives
rise to an Event-B context. Each UML-B machine gives rise to both an implicit Event-
B context and an Event-B machine. The implicit context is used to define types for the
classes and states in the UML-B machine. In the generated Event-B machine classes,
attributes and associations become variables. Events and transitions in classes and state
machines become events in the generated Event-B machine.

Fig. 1 shows an example of a package diagram that contains machine M1(a) which
has a class diagram(b) containing classes CA and CB. These classes give rise to the sets
CA SET and CB SET in the generated Event-B implicit context. In the generated Event-
B machine the classes CA and CB give rise to variables. The class CA consists of the
attribute x of type N and also the association a b of type CB. The multiplicity property
for the association a b shown in Fig. 1(e) specifies a many-to-one relationship (i.e.,
total function). A full explanation of association multiplicity may be found in [12]. The
attributes x and a b also represent variables in the generated Event-B machine. For each
class, attribute and association, a type invariant will be generated in Event-B machine.
For example, the class CA corresponds to the type invariant which specified that CA is a
subset of CA SET (CA ∈ P (CA SET)). Attribute x corresponds to the type invariant x ∈
CA→ N that specifies x is defined for all CA. Each class has a self name property with a
default value self, i.e., the default identifier that represents an instance of a class (which
may be changed by the modeler). The self name property of the class CA is shown in
Fig. 1(d). A class may have events and for each event, its parameters, guards and actions
can be defined explicitly as properties. µB (micro B) notation that borrows from the
Event-B notation is used for textual guards and actions. µB uses an object-oriented style
dot notation to show ownership of entities, i.e., attributes and associations, by classes.
Variables used in an expression can represent owned features using the dot notation. For
example, i.x refers to the value of the variable x which belongs to instance i. Another
example of this will be presented later (Fig. 5).

Attached to the class CA is its state machine, SM, listing its four transitions t1, t2,
t3 and t4. The state machine SM in Fig. 1(c) shows its two states, A and B and the
transitions. The solid black circle is the initial state, whereas, the solid black circle
with an outer circle is the final state. The translation to Event-B for a state machine
can either be a disjoint sets representation or state function representation. This two
styles are introduced in [10] and they are supported in the UML-B tool. UML-B allows
modelers to switch between these two representation.

For a disjoint sets representation, a disjoint sets of CA are introduced as variables
as follows:

A ∈ P(CA)
B ∈ P(CA)
A ∩ B = ∅

That is, variable A represents the set of instances of CA that are in the state A
and similarly for B. For a state function representation, a variable SM (i.e., the state
machine belonging to the class CA) is introduced representing a function mapping CA
to an enumerated set of states, SM STATES as follows:



SM = {A,B}
SM ∈ CA −→ SM STATES

That is, SM maps each instance of CA to its state. In this paper, the translation
to Event-B is described using the disjoint sets representation. The generated Event-B
machine for M1 is shown in Fig. 2. Each Event-B statement is preceded by its label
which defines its purpose. For example, CA.type is a label for the Event-B statement
CA ∈ P (CA SET ). The states A and B of SM state machine represent variables of
type CA (i.e., the state machine owner). An instance of CA changes its state when a
transition fires. For the states, an additional invariant stating that they are disjoint is
added (i.e., A ∩ B = ∅). For each transition there is a guard that specifies an instance
source state (labeled as .. isin ..) and actions that specify its target state (labeled as
.. enterState ..) and its departure from the current state (labeled as .. leaveState ..). The
parameter, self, indicates an instance of a class. A transition from an initial state such as
t1, defines a constructor for the class. The translation of t1 selects an unused instance
and adds it to the set of CA (labeled self.type). A transition to a final state such as t4 is
a destructor which removes an instance from current instances and from the domain of
all the class variables. The transition t3 is a self loop transition which does not changes
state. In the generated Event-B the event t3 has a guard that specifies its source state but
with a skip action i.e., not changing state.

Invariants and theorems (assertions requiring proofs) can be attached to classes or
states and become part of the Event-B machine. A full explanation and examples of
these is in [1].

3 Refinement of Classes in UML-B

In this section, the refinement techniques concerning the notion of refined classes and
inherited attributes are described.

The motivation for refined classes and inherited attributes come from performing
refinement in Event-B. The notion of refined classes and inherited attributes in UML-B
reflect the refinement of variables in Event-B. A notion of refined classes is needed in
UML-B because some elements of an abstract UML-B model need to be retained by
the refinement.

In Event-B refinement, a machine that refines another machine (i.e., abstract ma-
chine) may keep variables of an abstract machine, may drop some of the old variables
and may introduces new variables. In UML-B refinement, a machine (i.e., refined ma-
chine) that refines another machine (i.e., abstract machine) may contain refined classes
where each refined class refines a class of its abstract machine (i.e., keeps all variables
of its abstract machine). In UML-B refinement, a refined machine may drop some of re-
fined classes (i.e., drop some variables). Also in UML-B refinement, a refined machine
may introduce new classes (i.e., new variables) in a class diagram.

In UML-B refinement, a refined class that refines a class may inherit attributes of
the abstract class (i.e., keeps variables of its abstract machine). A refined class may
drop some of the attributes of the abstract class (i.e., drop some variables of its abstract
machine) and a refined class may introduce new attributes (i.e., new variables). The
following schematic table illustrate a refined class that inherits and drops abstract at-



Fig. 1. Package diagram and the UML-B specification of the Abstract Machine M1

Fig. 2. Generated Event-B specification of M1



tributes and introduces new attributes. The table lists out the attributes for class C and a
refinement of class C. Class C contain attributes a1, a2 and a3. In refinement, the refined
class C inherits attributes a1 and a2, drops attribute a2 and has new attributes a4 and
a5.

Class C Refined Class C
a1 a1 (inherited)
a2 a2 (inherited)
a3 a4 (new)

a5 (new)

We describe here an example of performing refinement in UML-B using the notion
of refined classes and inherited attributes. Fig. 3 shows an example of a package dia-
gram that manages a refinement relationship between machines. The package diagram
shows that machine M2 refines machine M1. The class diagram of M2 is also shown
in Fig. 3 where it consists of refined classes CA and CB which refine the classes CA and
CB of machine M1 respectively. The refined class CA of machine M2 inherits attribute
x and association a b of the class CA of machine M1. The refined class CB of machine
M2 has a new association cb cc. Machine M2 has a new class, CC which corresponds
to a new set (CC SET) in the generated Event-B implicit context. The refined classes
CA and CB are coloured white to differentiate them from an ordinary class CC. In the
generated Event-B machine for machine M2, the variables CA, CB, x and a b are re-
tained. The machine M2 has new variables CC and cb cc with their type invariants CC
∈ P (CC SET) and x ∈ CA → N respectively.

Fig. 3. Package diagram and Class Diagram of Machine M2

In Event-B refinement, a machine that refines another machine (i.e., abstract ma-
chine) must provide a refinement of each abstract event. This can be either one event
refines one abstract event or many events refines one abstract event. New events may
be introduced in the refinement. Similarly, in UML-B refinement, at least one con-
crete event must refines each abstract event and new events may be introduced. These



concrete events can either be attached to refined classes or state machines of a refined
classes. In UML-B refinement, we can also define additional invariants and theorems by
attaching them to refined classes and states that reflect adding invariants and theorems
in Event-B refinement.

4 Refinement of State Machines in UML-B

In this section, the refinement techniques concerning the notion of refined state ma-
chines and refined states are described.

Fig. 4. Refinement of State machine (machine M2 refines machine M1)

The motivation for refined state machines and refined states come from combin-
ing the state machine hierarchy in UML-B with refinement in Event-B. The essential
concept is that state machines are refined by elaborating an abstract state with nested
sub-states.

In UML-B refinement, a refined machine may contains refined state machines and
refined states of its abstract machine. We describe first an example of performing refine-
ment in UML-B using the notion of refined state machines and refined states. We will
then describe the general rules. Fig. 4 shows an example of refinement of a state ma-
chine. The refined class CA of M2 (Fig. 3(b)) has a refined state machine SM (Fig. 4(b))
that refines the state machine SM of class CA of machine M1 (Fig. 4(a)). The states of
refined state machine SM are the state A, that refines state A of machine M1 and the state
B, that refines state B of machine M1. The refined state machine SM contains the tran-
sitions t1, t2a, t2b, t3 and t4 which refine their abstract transitions of machine M1. In
Fig. 4(b), the abstract transitions t2 is replaced with transitions t2a and t2b which refine



the abstract transition t2 of machine M1. This refinement of a state machine reflects the
refinement in Event-B where many events refine one abstract event. The transitions t2a
and t2b have different source sub-states (i.e., representing different guards in Event-B)
which are defined in the nested state machine SM A.

The nested state machine SM A (Fig. 4(c)) elaborates the refined state A (Fig. 4(b))
of machine M2. The nested state machine, SM A has three states A1, A2 and A3. The
transition t1 of the nested state machine SM A in Fig. 4(c) elaborates the incoming
transition t1 of the super refined state A. It means, in the refinement, the target state of
the transition t1 is the state A1. The transitions t2a and t2b of the nested state machine
SM A elaborate the outgoing transition t2a and t2b of the super state A. In Fig. 4(b)
we do not see a distinction between transitions t2a and t2b. In Fig. 4(c) we can see a
distinction: t2a has sub-state A1 as a source while t2b has A3 as source. The transition
t3 of the nested state machine SM A elaborates the self loop transition of the refined
super state A specifying its source state as the state A1 and its target state as A2. In the
nested state machine SM A, the transition t5 is a new transition that represents a new
event in the generated Event-B machine.

In the generated Event-B machine, type invariants are created for all sub-states,
where their types are their super state, for example A1 ∈ P (A) is a type invariant for
the state A1. An additional invariant is generated to specify that all sub states constitute
their super state. For example, A = A1 ∪ A2 ∪ A3. Other generated invariants are a
number of disjoint invariants that specified all sub states are disjoint.

In the next successive paragraphs, we give a general definition of state machine
refinement based on the given example above. A refined state machine refines a state
machine (i.e., abstract state machine) of an abstract class. The structure of a refined
state machine is an elaboration of the structure of its abstraction in two possible ways:

– Each transition is replaced by one or more transitions.
– An abstract state may be elaborated by a nested state machine (see below).

In the given example, we used the techniques of state elaboration and transition
elaboration. In UML-B refinement, a refined state may be elaborated to sub states which
contain in a nested state machine forming a state machine hierarchy. State elaboration
enables more transitions to be added to a nested state machine. Some of these transitions
elaborate the incoming and outgoing transitions of the super state (i.e., the abstract
state). Some of these transitions are new transitions (i.e, reflects introducing new events
in Event-B).

In UML-B, nested state machines are modeled in separate state machine diagrams
from their parent state machine diagram. Therefore, the transition elaboration technique
is needed so that transitions in a nested state machine can elaborate the incoming and
outgoing transitions of the super state. In a nested state machine, a transition with an
initial source state elaborates at most one incoming transition to the super state and a
transition with a final target state elaborates at most one outgoing transition from the
super state.

An abstract state may have a self loop transition. In UML-B refinement, while the
state is elaborated into sub states, the self loop transition may be elaborated as one of
the transitions between any two of the sub states. The elaborated transition defines the
state changes from a sub state to another sub state when the transition fires.



5 Event Movement

This section describes the technique of moving an event from a refined class into a
new class introduced in a UML-B refinement. In contrast to the previous described
techniques, we are not introducing any new language feature with this technique. The
event movement technique may be used in UML-B refinement when a new class is
added and it is natural that the new class is responsible for performing the event.

Fig. 5. Example of the UML-B specification with an event in a class CA of an abstract machine

Fig. 6. Example of the UML-B specification when moving an event of a class in an abstract
machine into a new class in its refinement machine

We describe the event movement technique with an example shown in Fig. 5 and
Fig. 6. The class CA in Fig. 5(a) contains an event e1. In refinement (Fig. 6(a)), a new
class CC is introduced and the event e1 is moved to the class CC. In Fig. 5(b), the action
statement is using the self name selfCA instead of the default self identifier self. This is
because the default self name, self of the CA class of the abstract machine is changed to
selfCA to avoid conflicts with the default self name property of the new class CC. The



self name property become a parameter in the e1 event in the corresponding Event-B
machine. Translation to Event-B for e1 event is shown in the Fig. 5(c).

In the refinement machine, the event e1 become a transition between the two states
C1 and C2 of state machine CC SM (Fig. 6(b)). A parameter, ca, of type CA is added to
the e1 transition as shown in the property view in the Fig. 6(c). Also, a witness property
is defined for the event e1 which specified that ca in the refinement level represents
selfCA of its abstract level (i.e., ca = selfCA). The properties of event e1 in Fig. 5(c) and
Fig. 6(c) show the other parameter y of type N and also its guard and action which are
defined using µB notation.

The witness property is adapted from Event-B. In Event-B, a witness is used when
replacing a parameter of an abstract event with a different parameter in a concrete event
in the refinement. The witness is defined by a predicate involving the abstract parameter.
Most of the time, this predicate is a simple equality.

This event movement technique is useful when introducing a new class in UML-B
refinement. Section 5 will demonstrate its usefulness.

6 ATM Case Study

A case study based on an auto teller machine (ATM) was undertaken to validate the
extension of UML-B with regards to the notion of refined classes and refined state
machines. An ATM is a machine that allows bank customers to do some of the banking
transactions 24 hours per day. It allows bank customers to perform a range of functions,
including withdraw cash, check account balance and print mini-statements. In order to
perform these functions through an auto teller machine, bank customers need to use
their ATM cards which are provided to them by the bank. The case study focused only
on the requirements for the cash withdrawal function. There are three machine levels for
the ATM UML-B development. These machines are linked by a refinement relationship.
The summary for each machine level is as follows:

Abstract machine (ATM A): Models bank accounts and operations on accounts.
First Refinement (ATM R1): Introduces the ATMs, cards and PIN numbers.
Second Refinement (ATM R2: Introduces an explicit validation transition for cards

and splits withdrawal into a bank transition and an ATM transition.
The package diagram in Fig. 7 shows a refinement relationship between the ma-

chines,

Fig. 7. ATM Package Diagram

Fig. 8 shows a UML-B specification of the ATM abstract machine. The abstract ma-
chine consists of a class Account (8(a)) with its attribute bal and four events namely,



createAccount, deposit, withdraw and checkBalance . The Account class represents the
set of accounts that currently exist in the system. The attribute bal represents the bal-
ance of an account. The specification of the withdraw event is shown in 8(b) including
parameters, guards and actions. The withdraw event has one added parameter, am of
type natural number. The parameter is shown in the property view in Fig. 8 including
the guard and action. selfAcc is the self name property defined for the class Account.
The withdraw event can only occur if the amount, am, is less than or equal to the bal-
ance in the account. The withdraw event will result in decreasing the balance of the
account by am amount.

Fig. 8. UML-B specification of ATM abstract machine

The first refinement of the ATM model introduces three new classes which are ATM,
Card and Pin which represent the sets of ATMs, ATM cards and PIN numbers re-
spectively. The UML-B specification is shown in Fig. 9. The class diagram (Fig. 9(a))
of machine ATM R1 contains the new classes and a refined class Account that refines
the Account class of ATM A. The class ATM has an association atm card with the
class Card. The class Card has an association card pin with the class Pin and an
association card account with the refined class Account. The refined class inherits
the bal attribute and refines the two events, namely, createAccount and deposit of the
abstract Account class of machine ATM A. The other two events of its abstract class
namely, withdraw and checkBalance are moved to the new class ATM in this refinement
level as transitions in the state machine ATM SM of the class ATM. At the abstract level,
we specify the effect of a withdrawal on the account balance. In the refinement, we fur-
ther specify that the withdrawal takes place via an ATM. At the abstract level it is natural
to specify the withdrawal as an event of the Account class while in the refinement it is
natural to specify it as an event of the ATM class.

The state machine ATM SM in Fig. 9(b) partitions the behavior of the ATM into
either an idle state, (i.e., not being used/not active) or active atm state (i.e., is being
used). An ATM changes its state when it is triggered by a transition. The insertCard
transition can occur when an ATM is in the idle state and the card inserted is a valid
ATM card. When it occurs it changes an ATM state from idle to active atm. The eject-
Card transition changes an ATM state from active atm to idle. While an ATM is in



Fig. 9. UML-B specification of ATM First Refinement



active atm state, it mean, an ATM user can use it for withdrawal or checking an ac-
count balance (i.e., checkBalance transition). The withdrawOK transition represents a
successful withdrawal transaction, whereas, the withdrawFail transition represents a
failure possibly the withdrawal amount exceeds the account balance.

Fig. 9(c) shows the properties of the withdrawOK transition with the parameters,
witness, guards and action. The witness specifying that the parameter ac represents
the selfAcc parameter of the abstract withdraw event. In this refinement, the guards are
strengthened so that the withdrawOK transition can only occur when an ATM card is
inserted (selfATM.atm card = c), an instance of ATM is being used (selfATM ∈
dom(atm card)) and the ATM card corresponds to a valid account(c.card account =
ac). Fig. 9(d) also shows the refines property of the withdrawOK transition.

The second refinement models an explicit validation transition for cards and splits
withdrawal and balance check into a bank transition and an ATM transition. This is
achieved by elaborating the active atm state into sub-states. The class diagram of ma-
chine ATM R2 (not shown in any figure) contains four refined classes that refine the
classes Account, ATM, Pin and Card of ATM R1 machine. An attribute atm cash,
which represents the amount of cash stored in an ATM is added to the refined class ATM
of machine ATM R2. The refined class ATM of ATM R2 contains the refined state
machine ATM SM which contains the two refined states that refine the states idle and
active atm of the state machine ATM SM of ATM R1 (Fig. 10(a)).

Fig. 10. UML-B specification of ATM Second Refinement

A new state machine named active atm SM is added to the refined state ac-
tive atm of ATM R2 and it contains five sub-states, namely, validating, invalidCard,
transOption, performTrans and endTrans (Fig. 10(b)). The state machine has a tran-
sition insertCard which elaborates the incoming transition to the super refined state
active atm of ATM R2. The outgoing transitions ejectCard1, ejectCard2, eject-
Card3 and ejectCard4 from the states invalidCard, transOption, performedBankTrans
and endTrans respectively elaborate the outgoing transitions of the super refined state



active atm of ATM R2. The transitions withdrawOK, withdrawFail and checkBalance
elaborate the self loop transitions of the super refined state active atm. The transitions
validateCardOK, validateCardFail, withdrawATM and checkBalATM are new transi-
tions.

The state machine refinement in the second refinement introduces an additional
level in the state machine nesting hierarchy. This supports modular reasoning, since
refinement invariants are only required for the states that are being elaborated, so it
localizes proof effort.

All the proof obligations for the three machines ATM A, ATM R1 and ATM R2
were generated and proved using the Rodin tool provers [6]. The total number of proof
obligations (POs) is 200 and most of them are discharged automatically except for three
POs in ATM R2. These three POs were proved interactively.

7 Conclusions

UML-B provides a graphical front-end for Event-B. The work described here is a con-
tinuation of work for the UML-B, where we provide a way of performing refinement
in UML-B. We have described a notion of refined class and refined state machine. We
also described the following five refinement techniques:

– Add new classes to a refined class diagram and add attributes and associations to a
refined class

– State elaboration
– Transition elaboration
– Move event from a class in a class diagram to a new class in a refined class diagram

Some of the techniques used here (state elaboration, transition elaboration) were
previously introduced by Snook and Walden [13]. However, we provide tool support
based on UML-B giving a different modeling visualization from the UML diagram
symbols used in [13]. We also combine state machine refinement with class refinement
techniques, which are not dealt with by Snook and Walden. In [14], Plaska, Walden and
Snook suggest a process for refinement involving the application of patterns that are
based on the techniques introduced in [13].

The techniques of adding new attributes and associations to a class and adding new
classes to a class diagram have been introduced in a refinement of UML class dia-
gram [16]. Also, the technique of state elaboration has been introduced in a refinement
of UML state diagram [15].

We have presented the use of the above listed techniques in the ATM case study
which was modeled using the UML-B tool. The Rodin tool provers were used to gener-
ate and prove the proof obligations. The approach of elaborating states with sub states
in refinement, as illustrated by the ATM case study, supports an incremental refinement
approach. The hierarchical structure of nested state machines also supports modular
reasoning by localising the invariants required for refinement proofs.

The work described here is still in progress. The development of the ATM case study
in UML-B will be proceed to the next refinement level. We believe that the result of our



research will be a methodology of refinement in UML-B which will assists modeling in
UML-B.
Acknowledgements. This material is based upon work supported by the Deploy Project, which is
an FP7 Integrated Project supported by European Commission (Grant N 214158). The first author
is funded by the Malaysian Government, IPTA Academic Training Scheme and University Putra
Malaysia (UPM).

References

1. Snook, C. and Butler, M. : UML-B and Event-B: an integration of languages and tools. In:
The IASTED International Conference on Software Engineering - SE2008, 12-14th February
2008, innsbruck, Austria.(2008)

2. Object Management Group (2007). Introduction to OMG’s Unified Modelling Language
(UML). Online. Date Last Accessed:25/1/08.

3. Rumbaugh, J., Booch, G. and Jacobson, I. : The Unified Modelling Language User Guide.
Addison Wesley. (1999)

4. Metayer, C., Abrial, J.-R., Voisin, L: Event-B Language. Technical Report Deliverable 3.2,
EU Project IST-511599 - RODIN, http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf. Date Last
Accessed: 25/1/08.(2005)

5. Rigorous Open Development Environment for Complex Systems (RODIN) - IST 511599,
http://rodin.cs.ncl.ac.uk/. Date Last Accessed: 25/1/08.

6. Abrial, J. R., Butler, M., Hallerstede, S. and Voisin, L : An Open Extensible Tool Environ-
ment for Event-B, Proceedings of ICFEM 2006, LNCS volume 4260/2006, pp. 588-605.
(2006)

7. Evans, N. and Butler, M : A Proposal For Records in Event-B, In Journal T. Nipkow an J.
Misra, editors Formal Methods 2006, vol 4085, pp. 221-235, Springer-Verlag, McMaster,
Canada. (2006)

8. Abrial, J. : The B-Book: Assigning Programs to Meanings, Cambridge University Press
(1996)

9. Abrial, R. and Hallerstede, S. : Refinement, Decomposition and Instantiation of Discrete
Models: Application to Event-B, Journal Fundamentae Informatica. volume 77, pp. 1-28.,
IOS Press. (2007).

10. Butler, M. and Yadav, D. : An Incremental Development of the Mondex System in Event-B,
volume 20, number 1, Springer, journal Formal Aspects of Computing, pp. 61-77. (2008)

11. Butler, M. and Hallerstede, S.: The Rodin Formal Modelling Tool, BCS-FACS Christmas
2007 Meeting, Formal Methods In Industry, London.(2007)

12. Snook, C. and Butler, M. : UML-B: Formal modelling and design aided by UML, ACM
Transactions on Software Engineering and Methodology, volume 15, pp. 92-122, ACM
Press. (2006).

13. Snook, C. and Walden. M. : Refinement of Statemachines Using Event B Semantics, B2007:
Formal Semantic and Development in B, LNCS volume 4355/2006, pp. 171-185, Springer.
(2006).

14. M. Plaska, M Walden and C. Snook: Documenting the Progress of the System Develop-
ment. In Proc. of Workshop on Methods, Models and Tools for Fault Tolerance, Oxford, UK.
(2007).

15. OMG: UML 2.1.2 Superstructure Specification. (2007) http://www.omg.org/cgi-
bin/docs/formal/2007-11-02.pdf

16. Bergner, K. Rausch, A. Sihling, M. Vilbig, A. : Structuring and refinement of class diagrams:
Proceedings of the 32nd Annual Hawaii International Conference, Volume: Track6. (1999)


