

School of Electronics and Computer Science

Theory Plug-in for Rodin 3.0

T.S. Hoang¹ A. Salehi¹ M. Butler¹ L. Voisin² ¹ECS, University of Southampton, U.K. ²Systerel, France RODIN Workshop 2016 Linz, Austria 23rd May 2015

From Rodin 2.8 to Rodin 3.0 (1/2)

School of Electronics and Computer Science

Major (necessary) changes to the Rodin Core.

Stronger AST Library

- ► Mitigate risks of unsoundness: mixing several formula factories.
- ► Every AST node carries its building formula factory.
- Operation combining formulas check for factories compatibility.

From Rodin 2.8 to Rodin 3.0 (2/2)

School of Electronics and Computer Science

Major (necessary) changes to the Rodin Core.

Stronger sequent prover

- Introduction of context-dependent reasoner.
- Context-dependent reasoner cannot be reused.
- Context-dependent reasoner has to be replayed
- ► The rule-based provers' reasoners are context-dependent.

Problems for the Theory Plug-in

- ► Exceptions when openning proof obligation.
- ► Exceptions when applying rule-based provers' reasoners
- Changing the model has no effects on existing proofs.
- Losing proofs when saving (the exact problem is in loading previously saved proof).

Upgrading the Theory Plug-in

Pattern Matching Facility

- ► Use *ISpecialization* insteads of *ISubstitution*.
- Allows to specialize types consistently.

Patterns		Formulae
S	\longrightarrow	$\mathbb{P}(S)$
S	\longrightarrow	S imes T

Upgrading the Theory Plug-in

Matching for Associative Operators

School of Electronics and Computer Science

► Proper implementation for matching associative operators.

Patterns	Formulae	Result
$f; \{ X \mapsto C \}$	g; h; $\{y\mapsto c\}$	$\textit{f} \gets \textit{g}; \textit{h}$
		$x \leftarrow y$
		$\textit{C} \leftarrow \textit{C}$

Upgrading the Theory Plug-in

Matching for Associative Operators

School of Electronics and Computer Science

► Proper implementation for matching associative operators.

Patterns	Formulae	Result
$f; \{ x \mapsto c \}$	$g;h;\{y\mapsto c\}$	$f \leftarrow g; h$
		$x \leftarrow y$
		$\textit{C} \leftarrow \textit{C}$
e; f	$g;h;\{y\mapsto c\}$	$e \leftarrow g$
		$f \leftarrow h; \{y \mapsto c\}$

Datatype and Operator Extensions

- ► Correctly implement equality for datatype/operator extensions.
- Datatypes/Operators with the same definition will be assigned identical IDs.
- \blacktriangleright \Rightarrow Formula factories can be correctly compared and upgraded.
- $\blacktriangleright \implies$ saved proofs are loaded with the correct formula factories.

Theory Plug-in Version 4.0

- Major upgrade of the Theory Plug-in
- Previously saved proofs will be lost.
- ► The upgrade requires fixed in the Rodin Core
- ► Will be available after the next release of the Rodin Platform (Rodin 3.3)

Further Development

- Support for infix predicate operators.
- Support for predicate variables in theories.
- Usability improvement
- Improve matching facility for associative commutative operators
- ► Tatics for theory.
- Theory instantiation

Infix Predicate Operators

School of Electronics and Computer Science

- Cosmetic changes to improve readability.
- ► For example, for real numbers *x*₁, *x*₂, insteads of

 $smr(x_1, x_2),$

we can write

 $x_1 \lessdot x_2$

(No overloading of arithmetic operators).

Predicate Variables in Theories

- Currently cannot be statically checked
- Despite the rule-based provers already have some support.
- ► Need some additional supports from the Rodin Core.

Usability Improvement

- ► Interactive proofs slow in computing "applicable positions"
- $\blacktriangleright \implies$ Compute applicable positions on demand.
- ▶ Rodin Interactive proofs support needs to be changed.

Matching for AC operators

School of Electronics and Computer Science

- Matching for Associative and Commutative operators use the same algorithm for Associative operators.
- ► More matching can be found if take into account commutivity.

Example

- Pattern: x + f(y)
- Formula: a + f(b) + c
- Match: $x \leftarrow a + c, y \leftarrow b$.

- ► Proof rules and definitions are applied in some predefined order.
- Often, users want dedicate tactics
- Simple tactic language: Sequential composition, loops (similar to the current Rodin's preferences)
- Tactics associated with theories or with the developments?

Theory Instantiation

- ► Enhance reuse of theories.
- Suited for defining Abstract Data Types and their concrete representation.
- Supporting model variations through theories.

A Wish List

Southampton

- Support for infix predicate operators.
- Support for predicate variables in theories.
- Usability improvement
- Improve matching facility for associative commutative operators
- ► Tatics for theory.
- Theory instantiation
- ▶ ...