
Towards Modular Development in Event-B

Thai Son Hoang1, Hironobu Kuruma2, and Michael Butler1

1 ECS, University of Southamtpon, U.K.
2 Research and Development Group, Hitachi Ltd., Japan

Background. Event-B [2] developments are mostly structured around refinement
and decomposition relationships [3]. This top-down development architecture
enables system details to be gradually introduced into the formal model. More
often, this result in large model with monolithic structures.

Motivation. Various composition approaches have been proposed [6, 4, 7, 5]. This
proposal is inspired by these approaches and development methods such as
classical-B [1], working towards modular development in Event-B.

Machine inclusion. Our first concept is machine inclusions. Machine A that in-
cludes machine B inherits B’s variables and invariants. Variables of B cannot
be modified directly, but only through event’s synchronisation [7]. Multiple in-
stance of the included machine can be achieved via prefixing, similar to [5]. The
syntactical “flatten” of A can be seen in Fig. 1.

machine B
variables y
invariants J (y)
events
event f
any u where
GB (y , u)
then
BAPB (y , u, y ′)
end

machine A
includes p B
variables x
invariants I (x , p y)
events
event e
synchronises p f
any t where
GA(x , t)
HAB (x , p y , t , p u)
then
BAPA(x , t , x ′)
end

machine (flatten )A
variables x , p y
invariants
I (x , p y)
J (y)
events
event e
any t , p u where
GA(x , t)
HAB (x , p y , t , p u)
GB (y , u)
then
BAPA(x , t , x ′)
BAPB (p y , p u, p y ′)
end

Fig. 1: Machine inclusion

Refinement-chain inclusion. While machine-inclusion mechanism gives us a di-
rect reuse of machine, it is often the case that we want to reuse a refinement-
chain. Approaches such as [4, 8] allow to incorporate refinement chains in to



the development. However, these approaches involve generating of model which
is often cumbersome to accomodate changes. We propose to to include the
refinement-chain inside the machine itself. Fig. 2 illustrates a situation where
A includes a refinement chain from B1 to Bm. Semantically, A has double “in-

machine A
includes B1 −→ Bm

. . .
event e
synchronises f

. . .

Fig. 2: Refinement-chain inclusion

terfaces”. To its abstract machine, it acts as a machine with an inclusion of B1.
To its concrete machine, it acts as a machine with an inclusion of Bm. Since the
refinement of B1 by Bm has been proved separately, the refinement of (A + B1)
by (A + Bm) is almost correct-by-construction. The extra manual work required
is the refinement of the extra guard, e.g., HAB in Fig. 1.

Some evaluation. We have applied the idea (manually) to several examples. The
result is quite encouraging with reduction of the modelling and proving efforts.
In particular, this approach can be used several times, e.g., to have a hierarchy of
inclusions. The resulting models also easier to comprehend and in particular, it
should incorporate with changes to the imported model without any additional
effort.

Conclusion. The concept here is not new and incorporate many existing work.
We consider this as an effective way to have modular development in Event-B
which will reduce the modelling and proving efforts. We are investigating how
to extend Rodin to support the approach in the most efficient way.

References

1. J-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

3. J-R. Abrial and S. Hallerstede. Refinement, decomposition, and instantiation of
discrete models: Application to Event-B. Fundam. Inform., 77(1-2):1–28, 2007.

4. Thai Son Hoang, Andreas Fürst, and Jean-Raymond Abrial. Event-B patterns
and their tool support. Software and Systems Modelling, 12(2):229–244, May 2013.
http://dx.doi.org/10.1007/s10270-010-0183-7.



5. Alexei Iliasov, Elena Troubitsyna, Linas Laibinis, Alexander Romanovsky, Kimmo
Varpaaniemi, Dubravka Ilic, and Timo Latvala. Supporting reuse in event B devel-
opment: Modularisation approach. In Marc Frappier, Uwe Glässer, Sarfraz Khur-
shid, Régine Laleau, and Steve Reeves, editors, Abstract State Machines, Alloy, B
and Z, Second International Conference, ABZ 2010, Orford, QC, Canada, February
22-25, 2010. Proceedings, volume 5977 of Lecture Notes in Computer Science, pages
174–188. Springer, 2010.

6. Michael Poppleton. The composition of event-b models. In Egon Börger, Michael J.
Butler, Jonathan P. Bowen, and Paul Boca, editors, Abstract State Machines, B and
Z, First International Conference, ABZ 2008, London, UK, September 16-18, 2008.
Proceedings, volume 5238 of Lecture Notes in Computer Science, pages 209–222.
Springer, 2008.

7. R. Silva and M. Butler. Parallel composition using Event-B. http://wiki.event-b.
org/index.php/Parallel_Composition_using_Event-B, 2009.

8. Renato Silva and Michael J. Butler. Supporting reuse of event-b developments
through generic instantiation. In Karin Breitman and Ana Cavalcanti, editors, For-
mal Methods and Software Engineering, 11th International Conference on Formal
Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009.
Proceedings, volume 5885 of Lecture Notes in Computer Science, pages 466–484.
Springer, 2009.


