Tasking Event-B Translations

A. Edmunds
July 13, 2010

1 Tasking Event-B Machines to IL1

Source Target

Tasking Machine Task (DataType)

AutoTask Machine | Task (non-DataType / only run on start-up)
Shared Machine Protected Object (DataType)

Tasking and shared machine events map to Subroutine declarations.

Each reference to an event in the control construct is either ‘local’ or ‘remote’
with respect to a task. Remote events, used in looping and branching con-
structs, have no guards (or they have trivially true guards). Local events used
in the EventWrapper construct have no guards.

2 Synchronized Local/Remote Events

In order to represent the combined updates on local and remote machines in
the tasking language we introduce synchronized event composition, for events
of tasking/shared machines. In the following discussion we compose one local
and one remote event e; and e, respectively using ||.; where the remote event
does not have any guards. We define the combined event e as

e2 e Ile e (1)

In versionl of the tasking language local and remote machines do not share state,
the variables of the guards and actions are disjoint. We can write the individual
assignments of e £ ¢; | e, in the following way, e, z1,..,2; := y1 .. y; and the
assignments of e, T;11,..,Tp 1= Yj41..Yn. When composed in parallel we have,

ellleerZ g1 = T1, . Ty = Y1 - Yn (2)

When events are used in an FventWrapper construct, the implementation maps
to a blocking call. In this case it makes no sense to have a guard on the local

event since the calling task should not block itself. So we only guard the remote
event. We define the compound event e as,

e=a|egr— ar (3)

When we use I fThenFElse or While constructs, we restrict the use of guards
to the local event only. We prohibit the use of guards in remote events to
avoid complications due to interleaving with other tasks. Our previous work,
with OCB, had a similar constraint for the same reason; and the restriction
also allows the developer to reason about the effects in a clear way (problem
with false else guards!!). This also means that it makes no sense to write a
branch without a guarded local event, since the remote event has no guards,
if(true) then a endif is simply equivalent to the update a.

A compound event e is defined as,

e=g > a|lear (4)

If one of the events, either local or remote, is not specified in the control con-
struct then the missing event is interpreted as,

T — skip (5)

2.1 Tasking - Parallel Events to IL1

Control 111
Controll ; Control2 Controll ; Control2
EventWrapper e call ¢;(); call target.e.()
e=elleer
L: DO e OD In task body:
e=g = aleer while(g;){

call L., (C); ag;

}

In Protected:
subroutine L..(){ a,; }
L: DO e; FINALLY e; 0D | In task body:
€z = Gzl — Qgl ||e Exr while(g){
call L.1,O; ai;
}

call ez, ; asg;

In Protected:
subroutine L., (){ ai,; }

Control IL1
In task body:

L: IF e; ENDIF [ifC g1;){ body }]
[ELSEIF e, ENDELSEIF].. | [elseif (g.){ body }1..
[ELSE e, ENDELSE] [else{ body }]
xel..n

€yr = Gl — Qg ||e Cxr

body =
call Lezr(); (2]

and in Protected:
subroutine L., O az }

2.2 Tasking - Parallel Events to Event-B
2.2.1 Using Labelled Clauses

In the following table we use e; to indicate an event that is local to a task, and
e, to indicate a (remote) event belonging to a shared machine.

Control Event-B

Controll ; Control2 Controll ; Control2

L: EventWrapper e e =

WHEN pc; = L
e=2apllegr — ar THEN q; || pe; := next(L)
END

AN
€r =

WHEN g,
THEN a,
END

L: DO e 0D Clwhile =

e=g = a||ear WHEN ¢g; A pe; =1L
THEN ay

END

Erwhile £

WHEN T

THEN a,

END

A

Elwhilefalse =
WHEN —g; A pc; =L
THEN pc; := next(L)
END

L: DO e; FINALLY es OD | epuphite =

€z = Gzl — Qgl ”6 Qg WHEN gu N pe = L
THEN ay;

END

Crwhile é

WHEN T

THEN a;,

END

€lfinally £

WHEN g1 A g2i A pCt = L
THEN ay || pc := next(L)
END

€rfinally £

WHEN T

THEN as,

END

Control Event-B

L: IF e; ENDIF el =
[ELSEIF e, ENDELSEIF].. | WHEN gi; A pc; =L
[ELSE e, ENDELSE] THEN ay,; || pc := next(L)
END
€x = Gzl — Qg ||e Qg Erif =
WHEN T
THEN a4,
END

A
€lelseif_x =
WHEN A-gi1..(2—1) A Giz N pcs =1L
THEN ay, | pe; := next(L)

END

A
Erelseif_x —
WHEN T
THEN a,.,
END
€lelse_r =

WHEN A-g1. (n-1y A pet =1L
THEN a,,; || pc; := next(L)
END
A
Crelse_x =
WHEN T
THEN a,,.
END

2.2.2 Without Labelled Clauses

In the following table we use e; to indicate an event that is local to a task, and
e, to indicate a (remote) event belonging to a shared machine.

Control

Event-B

Controll ; Control2

Controll ; Control2

EventWrapper ¢

€ é al ||€ g’!' _> aT'

eny S

WHEN en =TRUFE

THEN q; || en:= FALSE ||
next(en) := TRUE

END

A
er =

WHEN g,
THEN a,
END

DO e 0D

€x = g1 — q ”ear

€lwhile £

WHEN ¢g; A en=TRUE
THEN g,

END

€rwhile £

WHEN T

THEN a,

END

€lfinally £

WHEN —g; AN en=TRUFE

THEN en := FALSE ||
next(en) := TRUE

END

DO e; FINALLY ep; 0D

€x = Ggl — Qg ||e Qg

A
€lwhile =
WHEN g;; A en=TRUE
THEN ay;
END
A
Erwhile =
WHEN T
THEN ay,
END

Elfinally £

WHEN —gi; A en=TRUE

THEN ay || en:= FALSE |
next(en) := TRUE

END

Erfinally £

WHEN T

THEN as,

END

Control

Event-B

L: IF e; ENDIF

[ELSEIF e, ENDELSEIF]..

[ELSE e, ENDELSE]

€z = Gzl — Qg ||e Qg

A
elif =
WHEN g¢g;; AN en=TRUFE
THEN ay; || en:= FALSE
next(en) := TRUE
END
Erif £
WHEN T
THEN a1y
END

€lelseif _x £
WHEN A-gi1..(z—1) A Giz A

en =TRUFE

THEN aq,; || next(en) := TRUE)||
en:= FALSFE

END

erelseif,:r =

WHEN T

THEN a,.,

END

€lelse_r =

WHEN A -g1. (-1 A
en=TRUFE

THEN a,, || next(en) := TRUE||
en:= FALSE

END

Erelse_x =

WHEN T

THEN a,,

END

