Difference between revisions of "Arithmetic Rewrite Rules"

From Event-B
Jump to navigationJump to search
imported>Frederic
(New page: {{RRHeader}} {{RRRow}}|<font size="-2"> SIMP_SPECIAL_MOD_0 </font>||<math> 0 \,\bmod\, E \;\;\defi\;\; 0 </math>|| || A {{RRRow}}|<font size="-2"> SIMP_SPECIAL_MOD_1 </font>||<math> ...)
 
imported>Laurent
(Added star column)
Line 1: Line 1:
 
{{RRHeader}}
 
{{RRHeader}}
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_MOD_0 </font>||<math>  0 \,\bmod\,  E \;\;\defi\;\;  0 </math>||  ||  A
+
{{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_MOD_0 </font>||<math>  0 \,\bmod\,  E \;\;\defi\;\;  0 </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_MOD_1 </font>||<math>  E \mod  1 \;\;\defi\;\;  0 </math>||  ||  A
+
{{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_MOD_1 </font>||<math>  E \mod  1 \;\;\defi\;\;  0 </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_MIN_SING </font>||<math>  \min (\{ E\} ) \;\;\defi\;\;  E </math>|| where <math>E</math> is a single expression ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_MIN_SING </font>||<math>  \min (\{ E\} ) \;\;\defi\;\;  E </math>|| where <math>E</math> is a single expression ||  A
{{RRRow}}|<font size="-2"> SIMP_MAX_SING </font>||<math>  \max (\{ E\} ) \;\;\defi\;\;  E </math>|| where <math>E</math> is a single expression ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_MAX_SING </font>||<math>  \max (\{ E\} ) \;\;\defi\;\;  E </math>|| where <math>E</math> is a single expression ||  A
{{RRRow}}|<font size="-2"> SIMP_MIN_NATURAL </font>||<math>  \min (\nat ) \;\;\defi\;\;  0 </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_MIN_NATURAL </font>||<math>  \min (\nat ) \;\;\defi\;\;  0 </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_MIN_NATURAL1 </font>||<math>  \min (\natn ) \;\;\defi\;\;  1 </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_MIN_NATURAL1 </font>||<math>  \min (\natn ) \;\;\defi\;\;  1 </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_MIN_BUNION_SING </font>||<math>  \begin{array}{cl} & \min (S \bunion  \ldots  \bunion  \{ \min (T)\}  \bunion  \ldots  \bunion  U) \\ \defi & \min (S \bunion  \ldots  \bunion  T \bunion  \ldots  \bunion  U) \\ \end{array} </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_MIN_BUNION_SING </font>||<math>  \begin{array}{cl} & \min (S \bunion  \ldots  \bunion  \{ \min (T)\}  \bunion  \ldots  \bunion  U) \\ \defi & \min (S \bunion  \ldots  \bunion  T \bunion  \ldots  \bunion  U) \\ \end{array} </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_MAX_BUNION_SING </font>||<math>  \begin{array}{cl} & \max (S \bunion  \ldots  \bunion  \{ \max (T)\}  \bunion  \ldots  \bunion  U) \\ \defi &  \max (S \bunion  \ldots  \bunion  T \bunion  \ldots  \bunion  U) \\  \end{array} </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_MAX_BUNION_SING </font>||<math>  \begin{array}{cl} & \max (S \bunion  \ldots  \bunion  \{ \max (T)\}  \bunion  \ldots  \bunion  U) \\ \defi &  \max (S \bunion  \ldots  \bunion  T \bunion  \ldots  \bunion  U) \\  \end{array} </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_MIN_UPTO </font>||<math>  \min (E \upto  F) \;\;\defi\;\;  E </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_MIN_UPTO </font>||<math>  \min (E \upto  F) \;\;\defi\;\;  E </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_MAX_UPTO </font>||<math>  \max (E \upto  F) \;\;\defi\;\;  F </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_MAX_UPTO </font>||<math>  \max (E \upto  F) \;\;\defi\;\;  F </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_MIN </font>||<math>  \min (\{ E, \ldots  , i, \ldots  , j, \ldots , H\} ) \;\;\defi\;\;  \min (\{ E, \ldots  , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_MIN </font>||<math>  \min (\{ E, \ldots  , i, \ldots  , j, \ldots , H\} ) \;\;\defi\;\;  \min (\{ E, \ldots  , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_MAX </font>||<math>  \max (\{ E, \ldots  , i, \ldots  , j, \ldots , H\} ) \;\;\defi\;\;  \max (\{ E, \ldots  , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \geq j</math> ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_MAX </font>||<math>  \max (\{ E, \ldots  , i, \ldots  , j, \ldots , H\} ) \;\;\defi\;\;  \max (\{ E, \ldots  , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \geq j</math> ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_MIN_UPTO </font>||<math>  \min (\{ i, \ldots  , j\} ) \;\;\defi\;\;  A \;\;(computation) </math>|| where <math>i, ... ,\,j</math> are literals ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_MIN_UPTO </font>||<math>  \min (\{ i, \ldots  , j\} ) \;\;\defi\;\;  A \;\;(computation) </math>|| where <math>i, ... ,\,j</math> are literals ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_MAX_UPTO </font>||<math>  \max (\{ i, \ldots  , j\} ) \;\;\defi\;\;  A \;\;(computation) </math>|| where <math>i, ... ,\,j</math> are literals ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_MAX_UPTO </font>||<math>  \max (\{ i, \ldots  , j\} ) \;\;\defi\;\;  A \;\;(computation) </math>|| where <math>i, ... ,\,j</math> are literals ||  A
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_CARD </font>||<math>  \card (\emptyset ) \;\;\defi\;\;  0 </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_CARD </font>||<math>  \card (\emptyset ) \;\;\defi\;\;  0 </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_CARD_SING </font>||<math>  \card (\{ E\} ) \;\;\defi\;\;  1 </math>|| where <math>E</math> is a single expression ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_CARD_SING </font>||<math>  \card (\{ E\} ) \;\;\defi\;\;  1 </math>|| where <math>E</math> is a single expression ||  A
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_EQUAL_CARD </font>||<math>  \card (S) = 0 \;\;\defi\;\;  S = \emptyset </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_EQUAL_CARD </font>||<math>  \card (S) = 0 \;\;\defi\;\;  S = \emptyset </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_CARD_POW </font>||<math>  \card (\pow (S)) \;\;\defi\;\;  2 ^ \card (S) </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_CARD_POW </font>||<math>  \card (\pow (S)) \;\;\defi\;\;  2 ^ \card (S) </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_CARD_BUNION </font>||<math>  \card (S \bunion  T) \;\;\defi\;\;  \card (S) + \card (T) - \card (S \binter  T) </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_CARD_BUNION </font>||<math>  \card (S \bunion  T) \;\;\defi\;\;  \card (S) + \card (T) - \card (S \binter  T) </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_CARD_CONVERSE </font>||<math>  \card (r^{-1} ) \;\;\defi\;\;  \card (r) </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_CARD_CONVERSE </font>||<math>  \card (r^{-1} ) \;\;\defi\;\;  \card (r) </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_CARD_ID </font>||<math>  \card (\id (S)) \;\;\defi\;\;  \card (S) </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_CARD_ID </font>||<math>  \card (\id (S)) \;\;\defi\;\;  \card (S) </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_CARD_LAMBDA </font>||<math>  \card (\lambda x\qdot (P \mid  E)) \;\;\defi\;\;  \card (\{ x \qdot  P \mid  x\} ) </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_CARD_LAMBDA </font>||<math>  \card (\lambda x\qdot (P \mid  E)) \;\;\defi\;\;  \card (\{ x \qdot  P \mid  x\} ) </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_CARD_COMPSET </font>||<math>  \card (\{ x \qdot  x \in  S \mid  x\} ) \;\;\defi\;\;  \card (S) </math>|| where <math>x</math> non free in <math>S</math> ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_CARD_COMPSET </font>||<math>  \card (\{ x \qdot  x \in  S \mid  x\} ) \;\;\defi\;\;  \card (S) </math>|| where <math>x</math> non free in <math>S</math> ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_CARD_UPTO </font>||<math>  \card (i \upto  j) \;\;\defi\;\;  j-i+1 </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_CARD_UPTO </font>||<math>  \card (i \upto  j) \;\;\defi\;\;  j-i+1 </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> ||  A
{{RRRow}}|<font size="-2"> SIMP_TYPE_CARD </font>||<math>  \card (\mathit{Tenum}) \;\;\defi\;\;  N </math>|| where <math>\mathit{Tenum}</math> is a carrier set containing <math>N</math> elements ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_TYPE_CARD </font>||<math>  \card (\mathit{Tenum}) \;\;\defi\;\;  N </math>|| where <math>\mathit{Tenum}</math> is a carrier set containing <math>N</math> elements ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_GE_CARD_0 </font>||<math>  \card (S) \geq  1 \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_GE_CARD_0 </font>||<math>  \card (S) \geq  1 \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_LE_CARD_1 </font>||<math>  1 \leq  \card (S) \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_LE_CARD_1 </font>||<math>  1 \leq  \card (S) \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_LE_CARD_0 </font>||<math>  0 \leq  \card (S) \;\;\defi\;\;  \btrue </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_LE_CARD_0 </font>||<math>  0 \leq  \card (S) \;\;\defi\;\;  \btrue </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_GE_CARD_0 </font>||<math>  \card (S) \geq  0 \;\;\defi\;\;  \btrue </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_GE_CARD_0 </font>||<math>  \card (S) \geq  0 \;\;\defi\;\;  \btrue </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_GT_CARD_0 </font>||<math>  \card (S) > 0 \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_GT_CARD_0 </font>||<math>  \card (S) > 0 \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_LT_CARD_0 </font>||<math>  0 < \card (S) \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_LT_CARD_0 </font>||<math>  0 < \card (S) \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_EQUAL_CARD_1 </font>||<math>  \card (S) = 1 \;\;\defi\;\;  \exists x \qdot  S = \{ x\} </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_EQUAL_CARD_1 </font>||<math>  \card (S) = 1 \;\;\defi\;\;  \exists x \qdot  S = \{ x\} </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_CARD_NATURAL </font>||<math>  \card (S) \in  \nat  \;\;\defi\;\;  \btrue </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_CARD_NATURAL </font>||<math>  \card (S) \in  \nat  \;\;\defi\;\;  \btrue </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_CARD_NATURAL1 </font>||<math>  \card (S) \in  \natn  \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_CARD_NATURAL1 </font>||<math>  \card (S) \in  \natn  \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_IN_NATURAL </font>||<math>  i \in  \nat  \;\;\defi\;\;  \btrue </math>|| where <math>i</math> is a literal ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_IN_NATURAL </font>||<math>  i \in  \nat  \;\;\defi\;\;  \btrue </math>|| where <math>i</math> is a literal ||  A
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_IN_NATURAL1 </font>||<math>  0 \in  \natn  \;\;\defi\;\;  \bfalse </math>||  ||  A
+
{{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_IN_NATURAL1 </font>||<math>  0 \in  \natn  \;\;\defi\;\;  \bfalse </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_IN_NATURAL1 </font>||<math>  i \in  \natn  \;\;\defi\;\;  \btrue </math>|| where <math>i</math> is a literal and <math>1 \leq i</math> ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_IN_NATURAL1 </font>||<math>  i \in  \natn  \;\;\defi\;\;  \btrue </math>|| where <math>i</math> is a literal and <math>1 \leq i</math> ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_UPTO </font>||<math>  i \upto  j \;\;\defi\;\;  \emptyset </math>|| where <math>i</math> and <math>j</math> are literals and <math>j < i</math> ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_UPTO </font>||<math>  i \upto  j \;\;\defi\;\;  \emptyset </math>|| where <math>i</math> and <math>j</math> are literals and <math>j < i</math> ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_IN_MINUS_NATURAL </font>||<math>  -i \in  \nat  \;\;\defi\;\;  \bfalse </math>|| where <math>i</math> is a literal and <math>1 \leq i</math> ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_IN_MINUS_NATURAL </font>||<math>  -i \in  \nat  \;\;\defi\;\;  \bfalse </math>|| where <math>i</math> is a literal and <math>1 \leq i</math> ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_IN_MINUS_NATURAL1 </font>||<math>  -i \in  \natn  \;\;\defi\;\;  \bfalse </math>|| where <math>i</math> is a literal ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_IN_MINUS_NATURAL1 </font>||<math>  -i \in  \natn  \;\;\defi\;\;  \bfalse </math>|| where <math>i</math> is a literal ||  A
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_KBOOL_BTRUE </font>||<math>  \bool (\btrue ) \;\;\defi\;\;  \True </math>||  ||  A
+
{{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_KBOOL_BTRUE </font>||<math>  \bool (\btrue ) \;\;\defi\;\;  \True </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_KBOOL_BFALSE </font>||<math>  \bool (\bfalse ) \;\;\defi\;\;  \False </math>||  ||  A
+
{{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_KBOOL_BFALSE </font>||<math>  \bool (\bfalse ) \;\;\defi\;\;  \False </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_EQUAL_KBOOL_TRUE </font>||<math>  \bool (P) = \True  \;\;\defi\;\;  P </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_EQUAL_KBOOL_TRUE </font>||<math>  \bool (P) = \True  \;\;\defi\;\;  P </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_EQUAL_KBOOL_FALSE </font>||<math>  \bool (P) = \False  \;\;\defi\;\;  \lnot\, P </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_EQUAL_KBOOL_FALSE </font>||<math>  \bool (P) = \False  \;\;\defi\;\;  \lnot\, P </math>||  ||  A
{{RRRow}}|<font size="-2"> DEF_EQUAL_MIN </font>||<math>  E = \min (S) \;\;\defi\;\;  E \in  S \land  (\forall x \qdot  x \in  S \limp  E \leq  x) </math>|| where <math>x</math> non free in <math>S, E</math> ||  M
+
{{RRRow}}|*||<font size="-2"> DEF_EQUAL_MIN </font>||<math>  E = \min (S) \;\;\defi\;\;  E \in  S \land  (\forall x \qdot  x \in  S \limp  E \leq  x) </math>|| where <math>x</math> non free in <math>S, E</math> ||  M
{{RRRow}}|<font size="-2"> DEF_EQUAL_MAX </font>||<math>  E = \max (S) \;\;\defi\;\;  E \in  S \land  (\forall x \qdot  x \in  S \limp  E \geq  x) </math>|| where <math>x</math> non free in <math>S, E</math> ||  M
+
{{RRRow}}|*||<font size="-2"> DEF_EQUAL_MAX </font>||<math>  E = \max (S) \;\;\defi\;\;  E \in  S \land  (\forall x \qdot  x \in  S \limp  E \geq  x) </math>|| where <math>x</math> non free in <math>S, E</math> ||  M
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_PLUS </font>||<math>  E + \ldots  + 0 + \ldots  + F \;\;\defi\;\;  E + \ldots  + F </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_PLUS </font>||<math>  E + \ldots  + 0 + \ldots  + F \;\;\defi\;\;  E + \ldots  + F </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_MINUS_R </font>||<math>  E - 0 \;\;\defi\;\;  E </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_MINUS_R </font>||<math>  E - 0 \;\;\defi\;\;  E </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_MINUS_L </font>||<math>  0 - E \;\;\defi\;\;  -E </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_MINUS_L </font>||<math>  0 - E \;\;\defi\;\;  -E </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_MINUS_MINUS </font>||<math>  - (- E) \;\;\defi\;\;  E </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_MINUS_MINUS </font>||<math>  - (- E) \;\;\defi\;\;  E </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_MULTI_MINUS </font>||<math>  E - E \;\;\defi\;\;  0 </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_MULTI_MINUS </font>||<math>  E - E \;\;\defi\;\;  0 </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_PROD_0 </font>||<math>  E * \ldots  * 0 * \ldots  * F \;\;\defi\;\;  0 </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_PROD_0 </font>||<math>  E * \ldots  * 0 * \ldots  * F \;\;\defi\;\;  0 </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_PROD_1 </font>||<math>  E * \ldots  * 1 * \ldots  * F \;\;\defi\;\;  E * \ldots  * F </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_PROD_1 </font>||<math>  E * \ldots  * 1 * \ldots  * F \;\;\defi\;\;  E * \ldots  * F </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_PROD_MINUS_EVEN </font>||<math>  (-E) * \ldots  * (-F) \;\;\defi\;\;  E * \ldots  * F </math>|| if an even number of <math>-</math> ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_PROD_MINUS_EVEN </font>||<math>  (-E) * \ldots  * (-F) \;\;\defi\;\;  E * \ldots  * F </math>|| if an even number of <math>-</math> ||  A
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_PROD_MINUS_ODD </font>||<math>  (-E) * \ldots  * (-F) \;\;\defi\;\;  -(E * \ldots  * F) </math>|| if an odd number of <math>-</math> ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_PROD_MINUS_ODD </font>||<math>  (-E) * \ldots  * (-F) \;\;\defi\;\;  -(E * \ldots  * F) </math>|| if an odd number of <math>-</math> ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_MINUS </font>||<math>  - (i) \;\;\defi\;\;  (-i) </math>|| where <math>i</math> is a literal ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_MINUS </font>||<math>  - (i) \;\;\defi\;\;  (-i) </math>|| where <math>i</math> is a literal ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_MINUS_MINUS </font>||<math>  - (-i) \;\;\defi\;\;  i </math>|| where <math>i</math> is a literal ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_MINUS_MINUS </font>||<math>  - (-i) \;\;\defi\;\;  i </math>|| where <math>i</math> is a literal ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_EQUAL </font>||<math>  <math>i = j<math> \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_EQUAL </font>||<math>  <math>i = j<math> \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_LE </font>||<math>  i \leq  j \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_LE </font>||<math>  i \leq  j \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_LT </font>||<math>  i < j \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_LT </font>||<math>  i < j \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_GE </font>||<math>  i \geq  j \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_GE </font>||<math>  i \geq  j \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A
{{RRRow}}|<font size="-2"> SIMP_LIT_GT </font>||<math>  <math>i > j<math> \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_LIT_GT </font>||<math>  <math>i > j<math> \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A
{{RRRow}}|<font size="-2"> SIMP_DIV_MINUS </font>||<math>  (- E) \div  (-F) \;\;\defi\;\;  E \div  F </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_DIV_MINUS </font>||<math>  (- E) \div  (-F) \;\;\defi\;\;  E \div  F </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_DIV_1 </font>||<math>  E \div  1 \;\;\defi\;\;  E </math>||  ||  A
+
{{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_DIV_1 </font>||<math>  E \div  1 \;\;\defi\;\;  E </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_DIV_0 </font>||<math>  0 \div  E \;\;\defi\;\;  0 </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_DIV_0 </font>||<math>  0 \div  E \;\;\defi\;\;  0 </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_EXPN_1 </font>||<math>  E ^ 1 \;\;\defi\;\;  E </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_EXPN_1 </font>||<math>  E ^ 1 \;\;\defi\;\;  E </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_EXPN_0 </font>||<math>  E ^ 0 \;\;\defi\;\;  1 </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_EXPN_0 </font>||<math>  E ^ 0 \;\;\defi\;\;  1 </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_MULTI_LE </font>||<math>  E \leq  E \;\;\defi\;\;  \btrue </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_MULTI_LE </font>||<math>  E \leq  E \;\;\defi\;\;  \btrue </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_MULTI_LT </font>||<math>  E < E \;\;\defi\;\;  \bfalse </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_MULTI_LT </font>||<math>  E < E \;\;\defi\;\;  \bfalse </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_MULTI_GE </font>||<math>  E \geq  E \;\;\defi\;\;  \btrue </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_MULTI_GE </font>||<math>  E \geq  E \;\;\defi\;\;  \btrue </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_MULTI_GT </font>||<math>  E > E \;\;\defi\;\;  \bfalse </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_MULTI_GT </font>||<math>  E > E \;\;\defi\;\;  \bfalse </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_MULTI_DIV </font>||<math>  E \div  E \;\;\defi\;\;  1 </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_MULTI_DIV </font>||<math>  E \div  E \;\;\defi\;\;  1 </math>||  ||  A
{{RRRow}}|<font size="-2"> SIMP_MULTI_MOD </font>||<math>  E \mod  E \;\;\defi\;\;  0 </math>||  ||  A
+
{{RRRow}}|*||<font size="-2"> SIMP_MULTI_MOD </font>||<math>  E \mod  E \;\;\defi\;\;  0 </math>||  ||  A
{{RRRow}}|<font size="-2"> DISTRI_PROD_PLUS </font>||<math>  a * (b + c) \;\;\defi\;\;  (a * b) + (a * c) </math>||  ||  M
+
{{RRRow}}|*||<font size="-2"> DISTRI_PROD_PLUS </font>||<math>  a * (b + c) \;\;\defi\;\;  (a * b) + (a * c) </math>||  ||  M
{{RRRow}}|<font size="-2"> DISTRI_PROD_MINUS </font>||<math>  a * (b - c) \;\;\defi\;\;  (a * b) - (a * c) </math>||  ||  M
+
{{RRRow}}|*||<font size="-2"> DISTRI_PROD_MINUS </font>||<math>  a * (b - c) \;\;\defi\;\;  (a * b) - (a * c) </math>||  ||  M
{{RRRow}}|<font size="-2"> DERIV_LE_CARD </font>||<math>  \card (S) \leq  \card (T) \;\;\defi\;\;  S \subseteq  T </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M
+
{{RRRow}}|*||<font size="-2"> DERIV_LE_CARD </font>||<math>  \card (S) \leq  \card (T) \;\;\defi\;\;  S \subseteq  T </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M
{{RRRow}}|<font size="-2"> DERIV_GE_CARD </font>||<math>  \card (S) \geq  \card (T) \;\;\defi\;\;  T \subseteq  S </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M
+
{{RRRow}}|*||<font size="-2"> DERIV_GE_CARD </font>||<math>  \card (S) \geq  \card (T) \;\;\defi\;\;  T \subseteq  S </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M
{{RRRow}}|<font size="-2"> DERIV_LT_CARD </font>||<math>  \card (S) < \card (T) \;\;\defi\;\;  S  \subset  T </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M
+
{{RRRow}}|*||<font size="-2"> DERIV_LT_CARD </font>||<math>  \card (S) < \card (T) \;\;\defi\;\;  S  \subset  T </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M
{{RRRow}}|<font size="-2"> DERIV_GT_CARD </font>||<math>  \card (S) > \card (T) \;\;\defi\;\;  T  \subset  S </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M
+
{{RRRow}}|*||<font size="-2"> DERIV_GT_CARD </font>||<math>  \card (S) > \card (T) \;\;\defi\;\;  T  \subset  S </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M
{{RRRow}}|<font size="-2"> DERIV_EQUAL_CARD </font>||<math>  \card (S) = \card (T) \;\;\defi\;\;  S = T  </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M  
+
{{RRRow}}|*||<font size="-2"> DERIV_EQUAL_CARD </font>||<math>  \card (S) = \card (T) \;\;\defi\;\;  S = T  </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M  
 
|}
 
|}
 
 
 
Some rules are not yet implemented:
 
 
* SIMP_SPECIAL_KUNION, SIMP_SPECIAL_KUNION, SIMP_SPECIAL_KINTER, SIMP_SPECIAL_POW, SIMP_SPECIAL_POW1, SIMP_SPECIAL_CPROD_R, SIMP_SPECIAL_CPROD_L, SIMP_SPECIAL_COMPSET_BFALSE, SIMP_SPECIAL_COMPSET_BTRUE, SIMP_SPECIAL_EQUAL_COMPSET, SIMP_SPECIAL_OVERL, SIMP_SPECIAL_DOMRES_L, SIMP_SPECIAL_DOMRES_R, SIMP_SPECIAL_RANRES_R, SIMP_SPECIAL_RANRES_L, SIMP_SPECIAL_DOMSUB_L, SIMP_SPECIAL_DOMSUB_R, SIMP_SPECIAL_RANSUB_R, SIMP_SPECIAL_RANSUB_L, SIMP_SPECIAL_FCOMP, SIMP_SPECIAL_BCOMP, SIMP_SPECIAL_DPROD_R, SIMP_SPECIAL_DPROD_L, SIMP_SPECIAL_PPROD_R, SIMP_SPECIAL_PPROD_L, SIMP_SPECIAL_RELIMAGE_L, SIMP_SPECIAL_CONVERSE, SIMP_SPECIAL_ID, SIMP_SPECIAL_REL_R, SIMP_SPECIAL_REL_L, SIMP_SPECIAL_EQUAL_REL, SIMP_SPECIAL_EQUAL_RELDOM, SIMP_SPECIAL_PRJ1, SIMP_SPECIAL_PRJ2, SIMP_SPECIAL_LAMBDA, SIMP_SPECIAL_MOD_0, SIMP_SPECIAL_MOD_1, SIMP_SPECIAL_IN_NATURAL1, SIMP_SPECIAL_KBOOL_BTRUE, SIMP_SPECIAL_KBOOL_BFALSE, SIMP_SPECIAL_DIV_1, SIMP_SPECIAL_EQUAL_RELDOMRAN, SIMP_SPECIAL_FORALL_BTRUE, SIMP_SPECIAL_FORALL_BFALSE, SIMP_SPECIAL_EXIST_BTRUE, SIMP_SPECIAL_EXIST_BFALSE, SIMP_SPECIAL_SUBSET_R, SIMP_SPECIAL_SUBSET_L
 
  
  

Revision as of 17:06, 11 February 2009

  Name Rule Side Condition A/M
SIMP_SPECIAL_MOD_0   0 \,\bmod\,  E \;\;\defi\;\;  0 A
SIMP_SPECIAL_MOD_1   E \mod  1 \;\;\defi\;\;  0 A
* SIMP_MIN_SING   \min (\{ E\} ) \;\;\defi\;\;  E where E is a single expression A
* SIMP_MAX_SING   \max (\{ E\} ) \;\;\defi\;\;  E where E is a single expression A
* SIMP_MIN_NATURAL   \min (\nat ) \;\;\defi\;\;  0 A
* SIMP_MIN_NATURAL1   \min (\natn ) \;\;\defi\;\;  1 A
* SIMP_MIN_BUNION_SING   \begin{array}{cl} & \min (S \bunion  \ldots  \bunion  \{ \min (T)\}  \bunion  \ldots  \bunion  U) \\ \defi & \min (S \bunion  \ldots  \bunion  T \bunion  \ldots  \bunion  U) \\ \end{array} A
* SIMP_MAX_BUNION_SING   \begin{array}{cl} & \max (S \bunion  \ldots  \bunion  \{ \max (T)\}  \bunion  \ldots  \bunion  U) \\ \defi &  \max (S \bunion  \ldots  \bunion  T \bunion  \ldots  \bunion  U) \\  \end{array} A
* SIMP_MIN_UPTO   \min (E \upto  F) \;\;\defi\;\;  E A
* SIMP_MAX_UPTO   \max (E \upto  F) \;\;\defi\;\;  F A
* SIMP_LIT_MIN   \min (\{ E, \ldots  , i, \ldots  , j, \ldots , H\} ) \;\;\defi\;\;  \min (\{ E, \ldots  , i, \ldots , H\} ) where i and j are literals and i \leq j A
* SIMP_LIT_MAX   \max (\{ E, \ldots  , i, \ldots  , j, \ldots , H\} ) \;\;\defi\;\;  \max (\{ E, \ldots  , i, \ldots , H\} ) where i and j are literals and i \geq j A
* SIMP_LIT_MIN_UPTO   \min (\{ i, \ldots  , j\} ) \;\;\defi\;\;  A \;\;(computation) where i, ... ,\,j are literals A
* SIMP_LIT_MAX_UPTO   \max (\{ i, \ldots  , j\} ) \;\;\defi\;\;  A \;\;(computation) where i, ... ,\,j are literals A
* SIMP_SPECIAL_CARD   \card (\emptyset ) \;\;\defi\;\;  0 A
* SIMP_CARD_SING   \card (\{ E\} ) \;\;\defi\;\;  1 where E is a single expression A
* SIMP_SPECIAL_EQUAL_CARD   \card (S) = 0 \;\;\defi\;\;  S = \emptyset A
* SIMP_CARD_POW   \card (\pow (S)) \;\;\defi\;\;  2 ^ \card (S) A
* SIMP_CARD_BUNION   \card (S \bunion  T) \;\;\defi\;\;  \card (S) + \card (T) - \card (S \binter  T) A
* SIMP_CARD_CONVERSE   \card (r^{-1} ) \;\;\defi\;\;  \card (r) A
* SIMP_CARD_ID   \card (\id (S)) \;\;\defi\;\;  \card (S) A
* SIMP_CARD_LAMBDA   \card (\lambda x\qdot (P \mid  E)) \;\;\defi\;\;  \card (\{ x \qdot  P \mid  x\} ) A
* SIMP_CARD_COMPSET   \card (\{ x \qdot  x \in  S \mid  x\} ) \;\;\defi\;\;  \card (S) where x non free in S A
* SIMP_LIT_CARD_UPTO   \card (i \upto  j) \;\;\defi\;\;  j-i+1 where i and j are literals and i \leq j A
* SIMP_TYPE_CARD   \card (\mathit{Tenum}) \;\;\defi\;\;  N where \mathit{Tenum} is a carrier set containing N elements A
* SIMP_LIT_GE_CARD_0   \card (S) \geq  1 \;\;\defi\;\;  \lnot\, S = \emptyset A
* SIMP_LIT_LE_CARD_1   1 \leq  \card (S) \;\;\defi\;\;  \lnot\, S = \emptyset A
* SIMP_LIT_LE_CARD_0   0 \leq  \card (S) \;\;\defi\;\;  \btrue A
* SIMP_LIT_GE_CARD_0   \card (S) \geq  0 \;\;\defi\;\;  \btrue A
* SIMP_LIT_GT_CARD_0   \card (S) > 0 \;\;\defi\;\;  \lnot\, S = \emptyset A
* SIMP_LIT_LT_CARD_0   0 < \card (S) \;\;\defi\;\;  \lnot\, S = \emptyset A
* SIMP_LIT_EQUAL_CARD_1   \card (S) = 1 \;\;\defi\;\;  \exists x \qdot  S = \{ x\} A
* SIMP_CARD_NATURAL   \card (S) \in  \nat  \;\;\defi\;\;  \btrue A
* SIMP_CARD_NATURAL1   \card (S) \in  \natn  \;\;\defi\;\;  \lnot\, S = \emptyset A
* SIMP_LIT_IN_NATURAL   i \in  \nat  \;\;\defi\;\;  \btrue where i is a literal A
SIMP_SPECIAL_IN_NATURAL1   0 \in  \natn  \;\;\defi\;\;  \bfalse A
* SIMP_LIT_IN_NATURAL1   i \in  \natn  \;\;\defi\;\;  \btrue where i is a literal and 1 \leq i A
* SIMP_LIT_UPTO   i \upto  j \;\;\defi\;\;  \emptyset where i and j are literals and j < i A
* SIMP_LIT_IN_MINUS_NATURAL   -i \in  \nat  \;\;\defi\;\;  \bfalse where i is a literal and 1 \leq i A
* SIMP_LIT_IN_MINUS_NATURAL1   -i \in  \natn  \;\;\defi\;\;  \bfalse where i is a literal A
SIMP_SPECIAL_KBOOL_BTRUE   \bool (\btrue ) \;\;\defi\;\;  \True A
SIMP_SPECIAL_KBOOL_BFALSE   \bool (\bfalse ) \;\;\defi\;\;  \False A
* SIMP_LIT_EQUAL_KBOOL_TRUE   \bool (P) = \True  \;\;\defi\;\;  P A
* SIMP_LIT_EQUAL_KBOOL_FALSE   \bool (P) = \False  \;\;\defi\;\;  \lnot\, P A
* DEF_EQUAL_MIN   E = \min (S) \;\;\defi\;\;  E \in  S \land  (\forall x \qdot  x \in  S \limp  E \leq  x) where x non free in S, E M
* DEF_EQUAL_MAX   E = \max (S) \;\;\defi\;\;  E \in  S \land  (\forall x \qdot  x \in  S \limp  E \geq  x) where x non free in S, E M
* SIMP_SPECIAL_PLUS   E + \ldots  + 0 + \ldots  + F \;\;\defi\;\;  E + \ldots  + F A
* SIMP_SPECIAL_MINUS_R   E - 0 \;\;\defi\;\;  E A
* SIMP_SPECIAL_MINUS_L   0 - E \;\;\defi\;\;  -E A
* SIMP_MINUS_MINUS    - (- E) \;\;\defi\;\;  E A
* SIMP_MULTI_MINUS   E - E \;\;\defi\;\;  0 A
* SIMP_SPECIAL_PROD_0   E * \ldots  * 0 * \ldots  * F \;\;\defi\;\;  0 A
* SIMP_SPECIAL_PROD_1   E * \ldots  * 1 * \ldots  * F \;\;\defi\;\;  E * \ldots  * F A
* SIMP_SPECIAL_PROD_MINUS_EVEN   (-E) * \ldots  * (-F) \;\;\defi\;\;  E * \ldots  * F if an even number of - A
* SIMP_SPECIAL_PROD_MINUS_ODD   (-E) * \ldots  * (-F) \;\;\defi\;\;  -(E * \ldots  * F) if an odd number of - A
* SIMP_LIT_MINUS    - (i) \;\;\defi\;\;  (-i) where i is a literal A
* SIMP_LIT_MINUS_MINUS    - (-i) \;\;\defi\;\;  i where i is a literal A
* SIMP_LIT_EQUAL   <math>i = j<math> \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) where i and j are literals A
* SIMP_LIT_LE   i \leq  j \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) where i and j are literals A
* SIMP_LIT_LT   i < j \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) where i and j are literals A
* SIMP_LIT_GE   i \geq  j \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) where i and j are literals A
* SIMP_LIT_GT   <math>i > j<math> \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) where i and j are literals A
* SIMP_DIV_MINUS   (- E) \div  (-F) \;\;\defi\;\;  E \div  F A
SIMP_SPECIAL_DIV_1   E \div  1 \;\;\defi\;\;  E A
* SIMP_SPECIAL_DIV_0   0 \div  E \;\;\defi\;\;  0 A
* SIMP_SPECIAL_EXPN_1   E ^ 1 \;\;\defi\;\;  E A
* SIMP_SPECIAL_EXPN_0   E ^ 0 \;\;\defi\;\;  1 A
* SIMP_MULTI_LE   E \leq  E \;\;\defi\;\;  \btrue A
* SIMP_MULTI_LT   E < E \;\;\defi\;\;  \bfalse A
* SIMP_MULTI_GE   E \geq  E \;\;\defi\;\;  \btrue A
* SIMP_MULTI_GT   E > E \;\;\defi\;\;  \bfalse A
* SIMP_MULTI_DIV   E \div  E \;\;\defi\;\;  1 A
* SIMP_MULTI_MOD   E \mod  E \;\;\defi\;\;  0 A
* DISTRI_PROD_PLUS   a * (b + c) \;\;\defi\;\;  (a * b) + (a * c) M
* DISTRI_PROD_MINUS   a * (b - c) \;\;\defi\;\;  (a * b) - (a * c) M
* DERIV_LE_CARD   \card (S) \leq  \card (T) \;\;\defi\;\;  S \subseteq  T S and T must be of the same type M
* DERIV_GE_CARD   \card (S) \geq  \card (T) \;\;\defi\;\;  T \subseteq  S S and T must be of the same type M
* DERIV_LT_CARD   \card (S) < \card (T) \;\;\defi\;\;  S  \subset  T S and T must be of the same type M
* DERIV_GT_CARD   \card (S) > \card (T) \;\;\defi\;\;  T  \subset  S S and T must be of the same type M
* DERIV_EQUAL_CARD   \card (S) = \card (T) \;\;\defi\;\;  S = T  S and T must be of the same type M