Difference between revisions of "Induction proof"

From Event-B
Jump to navigationJump to search
imported>Christophe
imported>Christophe
Line 17: Line 17:
 
<math>
 
<math>
 
\forall s.s \subseteq \mathbb{N} \land 0 \in s \land  (\forall n.n \in s => n+1 \in s)\Rightarrow  N \subseteq s
 
\forall s.s \subseteq \mathbb{N} \land 0 \in s \land  (\forall n.n \in s => n+1 \in s)\Rightarrow  N \subseteq s
 +
</math>
 +
 +
----
 +
 +
The proof of the previous theorem is given by the following. <br/>
 +
Instanciate the key theorem with : <math>   \{x|x\in \mathbb{N} \land P(x)\}</math>

Revision as of 21:22, 13 October 2008

This page explains how to proove with induction method on the natural number with Rodin tools. In other words, how to proove :

P(0)

\forall i.i \in \mathbb{N}\land P(i) \Rightarrow P(i+1)

\vdash
\forall i. i \in \mathbb{N}  \Rightarrow P(i+1)


The proof key is the following theorem:

\forall s.s \subseteq \mathbb{N} \land 0 \in s \land  (\forall n.n \in s => n+1 \in s)\Rightarrow  N \subseteq s


The proof of the previous theorem is given by the following.
Instanciate the key theorem with : 	  \{x|x\in \mathbb{N} \land P(x)\}