Set Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Laurent Improved rule SIMP_COMPSET_EQUAL. |
Rules SIMP_{EMPTY,SINGLE}_PARTITION were implemented |
||
(20 intermediate revisions by 6 users not shown) | |||
Line 17: | Line 17: | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_IMP_BFALSE_L}}||<math> \bfalse \limp P \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_IMP_BFALSE_L}}||<math> \bfalse \limp P \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_IMP}}||<math> P \limp P \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_IMP}}||<math> P \limp P \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}|*||{{Rulename| | {{RRRow}}|*||{{Rulename|SIMP_MULTI_IMP_NOT_L}}||<math>\lnot P\limp P\;\;\defi\;\; P</math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_IMP_NOT_R}}||<math>P\limp\lnot P\;\;\defi\;\;\lnot P</math>|| || A | |||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_IMP_AND}}||<math> P \land \ldots \land Q \land \ldots \land R \limp Q \;\;\defi\;\; \btrue </math>|| || A | |||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_IMP_AND_NOT_R}}||<math> P \land \ldots \land Q \land \ldots \land R \limp \lnot\, Q \;\;\defi\;\; \lnot\,(P \land \ldots \land Q \land \ldots \land R) </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_IMP_AND_NOT_R}}||<math> P \land \ldots \land Q \land \ldots \land R \limp \lnot\, Q \;\;\defi\;\; \lnot\,(P \land \ldots \land Q \land \ldots \land R) </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_IMP_AND_NOT_L}}||<math> P \land \ldots \land \lnot\, Q \land \ldots \land R \limp Q \;\;\defi\;\; \lnot\,(P \land \ldots \land \lnot\, Q \land \ldots \land R) </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_IMP_AND_NOT_L}}||<math> P \land \ldots \land \lnot\, Q \land \ldots \land R \limp Q \;\;\defi\;\; \lnot\,(P \land \ldots \land \lnot\, Q \land \ldots \land R) </math>|| || A | ||
Line 24: | Line 26: | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_NOT_BTRUE}}||<math> \lnot\, \btrue \;\;\defi\;\; \bfalse </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_NOT_BTRUE}}||<math> \lnot\, \btrue \;\;\defi\;\; \bfalse </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_NOT_BFALSE}}||<math> \lnot\, \bfalse \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_NOT_BFALSE}}||<math> \lnot\, \bfalse \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_NOT_NOT}}||<math> \lnot\, \lnot\, P \;\;\defi\;\; P </math>|| || | {{RRRow}}|*||{{Rulename|SIMP_NOT_NOT}}||<math> \lnot\, \lnot\, P \;\;\defi\;\; P </math>|| || AM | ||
{{RRRow}}|*||{{Rulename|SIMP_NOTEQUAL}}||<math> E \neq F \;\;\defi\;\; \lnot\, E = F </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_NOTEQUAL}}||<math> E \neq F \;\;\defi\;\; \lnot\, E = F </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_NOTIN}}||<math> E \notin F \;\;\defi\;\; \lnot\, E \in F </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_NOTIN}}||<math> E \notin F \;\;\defi\;\; \lnot\, E \in F </math>|| || A | ||
Line 39: | Line 41: | ||
{{RRRow}}|*||{{Rulename|SIMP_FORALL_AND}}||<math> \forall x \qdot P \land Q \;\;\defi\;\; (\forall x \qdot P) \land (\forall x \qdot Q) </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_FORALL_AND}}||<math> \forall x \qdot P \land Q \;\;\defi\;\; (\forall x \qdot P) \land (\forall x \qdot Q) </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_EXISTS_OR}}||<math> \exists x \qdot P \lor Q \;\;\defi\;\; (\exists x \qdot P) \lor (\exists x \qdot Q) </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_EXISTS_OR}}||<math> \exists x \qdot P \lor Q \;\;\defi\;\; (\exists x \qdot P) \lor (\exists x \qdot Q) </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_EXISTS_IMP}}||<math>\exists x\qdot P\limp Q\;\;\defi\;\;(\forall x\qdot P)\limp(\exists x\qdot Q)</math>|| || A | |||
{{RRRow}}|*||{{Rulename|SIMP_FORALL}}||<math> \forall \ldots ,z,\ldots \qdot P(z) \;\;\defi\;\; \forall z \qdot P(z) </math>|| Quantified identifiers other than <math>z</math> do not occur in <math>P</math> || A | {{RRRow}}|*||{{Rulename|SIMP_FORALL}}||<math> \forall \ldots ,z,\ldots \qdot P(z) \;\;\defi\;\; \forall z \qdot P(z) </math>|| Quantified identifiers other than <math>z</math> do not occur in <math>P</math> || A | ||
{{RRRow}}|*||{{Rulename|SIMP_EXISTS}}||<math> \exists \ldots ,z,\ldots \qdot P(z) \;\;\defi\;\; \exists z \qdot P(z) </math>|| Quantified identifiers other than <math>z</math> do not occur in <math>P</math> || A | {{RRRow}}|*||{{Rulename|SIMP_EXISTS}}||<math> \exists \ldots ,z,\ldots \qdot P(z) \;\;\defi\;\; \exists z \qdot P(z) </math>|| Quantified identifiers other than <math>z</math> do not occur in <math>P</math> || A | ||
Line 52: | Line 55: | ||
{{RRRow}}|*||{{Rulename|SIMP_SUBSETEQ_BUNION}}||<math> S \subseteq A \bunion \ldots \bunion S \bunion \ldots \bunion B \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SUBSETEQ_BUNION}}||<math> S \subseteq A \bunion \ldots \bunion S \bunion \ldots \bunion B \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SUBSETEQ_BINTER}}||<math> A \binter \ldots \binter S \binter \ldots \binter B \subseteq S \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SUBSETEQ_BINTER}}||<math> A \binter \ldots \binter S \binter \ldots \binter B \subseteq S \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}|*||{{Rulename|DERIV_SUBSETEQ_BUNION}}||<math> A \bunion \ldots \bunion B \subseteq S \;\;\defi\;\; A \subseteq S \land \ldots \land B \subseteq S </math>|| || | {{RRRow}}|*||{{Rulename|DERIV_SUBSETEQ_BUNION}}||<math> A \bunion \ldots \bunion B \subseteq S \;\;\defi\;\; A \subseteq S \land \ldots \land B \subseteq S </math>|| || A | ||
{{RRRow}}|*||{{Rulename|DERIV_SUBSETEQ_BINTER}}||<math> S \subseteq A \binter \ldots \binter B \;\;\defi\;\; S \subseteq A \land \ldots \land S \subseteq B </math>|| || | {{RRRow}}|*||{{Rulename|DERIV_SUBSETEQ_BINTER}}||<math> S \subseteq A \binter \ldots \binter B \;\;\defi\;\; S \subseteq A \land \ldots \land S \subseteq B </math>|| || A | ||
<!-- | <!-- | ||
{{RRRow}}|||{{Rulename|SIMP_SUBSET_BUNION}}||<math> A \bunion \ldots \bunion B \subset S \;\;\defi\;\; A \subset S \land \ldots \land B \subset S </math>|| || A | {{RRRow}}|||{{Rulename|SIMP_SUBSET_BUNION}}||<math> A \bunion \ldots \bunion B \subset S \;\;\defi\;\; A \subset S \land \ldots \land B \subset S </math>|| || A | ||
Line 85: | Line 88: | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_CPROD_R}}||<math> S \cprod \emptyset \;\;\defi\;\; \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_CPROD_R}}||<math> S \cprod \emptyset \;\;\defi\;\; \emptyset </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_CPROD_L}}||<math> \emptyset \cprod S \;\;\defi\;\; \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_CPROD_L}}||<math> \emptyset \cprod S \;\;\defi\;\; \emptyset </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_COMPSET_EQUAL}}||<math> \{ x\qdot x = E\mid F(x) \} \;\;\defi\;\; \{ F(E)\} </math>|| where <math>x</math> non free in <math>E</math> || A | {{RRRow}}|||{{Rulename|SIMP_COMPSET_EQUAL}}||<math> \{ x, y \qdot x = E(y) \land P(y) \mid F(x, y) \} \;\;\defi\;\; \{ y \qdot P(y) \mid F(E(y), y) \} </math>|| where <math>x</math> non free in <math>E</math> and non free in <math>P</math> || A | ||
{{RRRow}}|*||{{Rulename|SIMP_COMPSET_IN}}||<math> \{ x \qdot x \in S \mid x \} \;\;\defi\;\; S </math>|| where <math>x</math> non free in <math>S</math> || A | {{RRRow}}|*||{{Rulename|SIMP_COMPSET_IN}}||<math> \{ x \qdot x \in S \mid x \} \;\;\defi\;\; S </math>|| where <math>x</math> non free in <math>S</math> || A | ||
{{RRRow}}|*||{{Rulename|SIMP_COMPSET_SUBSETEQ}}||<math> \{ x \qdot x \subseteq S \mid x \} \;\;\defi\;\; \pow (S) </math>|| where <math>x</math> non free in <math>S</math> || A | {{RRRow}}|*||{{Rulename|SIMP_COMPSET_SUBSETEQ}}||<math> \{ x \qdot x \subseteq S \mid x \} \;\;\defi\;\; \pow (S) </math>|| where <math>x</math> non free in <math>S</math> || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_COMPSET_BFALSE}}||<math> \{ x \qdot \bfalse \mid x \} \;\;\defi\;\; \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_COMPSET_BFALSE}}||<math> \{ x \qdot \bfalse \mid x \} \;\;\defi\;\; \emptyset </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_COMPSET_BTRUE}}||<math> \{ x \qdot \btrue \mid | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_COMPSET_BTRUE}}||<math> \{ x \qdot \btrue \mid E \} \;\;\defi\;\; \mathit{Ty} </math>|| where the type of <math>E</math> is <math>\mathit{Ty}</math> and <math>E</math> is a maplet combination of locally-bound, pairwise-distinct bound identifiers || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SUBSETEQ_COMPSET_L}}||<math> \{ x \qdot P(x) \mid E(x) \} \subseteq S \;\;\defi\;\; \forall y\qdot P(y) \limp E(y) \in S </math>|| where <math>y</math> is fresh || A | {{RRRow}}|*||{{Rulename|SIMP_SUBSETEQ_COMPSET_L}}||<math> \{ x \qdot P(x) \mid E(x) \} \subseteq S \;\;\defi\;\; \forall y\qdot P(y) \limp E(y) \in S </math>|| where <math>y</math> is fresh || A | ||
{{RRRow}}|*||{{Rulename|SIMP_IN_COMPSET}}||<math> F \in \{ x,y,\ldots \qdot P(x,y,\ldots) \mid E(x,y,\ldots) \} \;\;\defi\;\; \exists x,y,\ldots \qdot P(x,y,\ldots) \land E(x,y,\ldots) = F </math>|| where <math>x</math>, <math>y</math>, <math>\ldots</math> are not free in <math>F</math> || A | {{RRRow}}|*||{{Rulename|SIMP_IN_COMPSET}}||<math> F \in \{ x,y,\ldots \qdot P(x,y,\ldots) \mid E(x,y,\ldots) \} \;\;\defi\;\; \exists x,y,\ldots \qdot P(x,y,\ldots) \land E(x,y,\ldots) = F </math>|| where <math>x</math>, <math>y</math>, <math>\ldots</math> are not free in <math>F</math> || A | ||
{{RRRow}}|*||{{Rulename|SIMP_IN_COMPSET_ONEPOINT}}||<math> E \in \{ x \qdot P(x) \mid x \} \;\;\defi\;\; P(E) </math>|| Equivalent to general simplification followed by One Point Rule application with the last conjunct predicate || A | {{RRRow}}|*||{{Rulename|SIMP_IN_COMPSET_ONEPOINT}}||<math> E \in \{ x \qdot P(x) \mid x \} \;\;\defi\;\; P(E) </math>|| Equivalent to general simplification followed by One Point Rule application with the last conjunct predicate || A | ||
Line 99: | Line 101: | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_KBOOL_BFALSE}}||<math> \bool (\bfalse ) \;\;\defi\;\; \False </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_KBOOL_BFALSE}}||<math> \bool (\bfalse ) \;\;\defi\;\; \False </math>|| || A | ||
{{RRRow}}|||{{Rulename|DISTRI_SUBSETEQ_BUNION_SING}}||<math> S \bunion \{ F\} \subseteq T \;\;\defi\;\; S \subseteq T \land F \in T </math>|| where <math>F</math> is a single expression || M | {{RRRow}}|||{{Rulename|DISTRI_SUBSETEQ_BUNION_SING}}||<math> S \bunion \{ F\} \subseteq T \;\;\defi\;\; S \subseteq T \land F \in T </math>|| where <math>F</math> is a single expression || M | ||
{{RRRow}}| ||{{Rulename|DEF_FINITE}}||<math> \finite(S) \;\;\defi\;\; \exists n,f\qdot | {{RRRow}}|*||{{Rulename|DEF_FINITE}}||<math> \finite(S) \;\;\defi\;\; \exists n,f\qdot f\in 1\upto n \tbij S </math>|| || M | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_FINITE}}||<math> \finite (\emptyset ) \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_FINITE}}||<math> \finite (\emptyset ) \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_FINITE_SETENUM}}||<math> \finite (\{ a, \ldots , b\} ) \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_FINITE_SETENUM}}||<math> \finite (\{ a, \ldots , b\} ) \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_FINITE_BUNION}}||<math> \finite (S \bunion T) \;\;\defi\;\; \finite (S) \land \finite (T) </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_FINITE_BUNION}}||<math> \finite (S \bunion T) \;\;\defi\;\; \finite (S) \land \finite (T) </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_FINITE_POW}}||<math> \finite (\pow (S)) \;\;\defi\;\; \finite (S) </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_FINITE_POW}}||<math> \finite (\pow (S)) \;\;\defi\;\; \finite (S) </math>|| || A | ||
{{RRRow}}|*||{{Rulename|DERIV_FINITE_CPROD}}||<math> \finite (S \cprod T) \;\;\defi\;\; S = \emptyset \lor T = \emptyset \lor (\finite (S) \land \finite (T)) </math>|| || A | {{RRRow}}|*||{{Rulename|DERIV_FINITE_CPROD}}||<math> \finite (S \cprod T) \;\;\defi\;\; S = \emptyset \lor T = \emptyset \lor (\finite (S) \land \finite (T)) </math>|| || A | ||
Line 110: | Line 110: | ||
{{RRRow}}|*||{{Rulename|SIMP_FINITE_UPTO}}||<math> \finite (a \upto b) \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_FINITE_UPTO}}||<math> \finite (a \upto b) \;\;\defi\;\; \btrue </math>|| || A | ||
<!-- Disabled rules (some are false, need more thinking to check which) | <!-- Disabled rules (some are false, need more thinking to check which) | ||
{{RRRow}}|||{{Rulename|SIMP_FINITE_UNION}}||<math>\finite(\union(S)) \;\;\defi\;\; \finite(S)\;\land\;(\forall x\qdot x\in S\limp \finite(x))</math>|| || M | |||
{{RRRow}}|||{{Rulename|SIMP_FINITE_QUNION}}||<math>\finite(\Union x\qdot P\mid E) \;\;\defi\;\; \finite(\{x\qdot P\mid E\})\;\land\;(\forall x\qdot P\limp \finite(E))</math>|| this equivalence is false: for example, the union of an infinite set of empty sets is finite; the right-to-left implication is true || M | |||
{{RRRow}}|||{{Rulename|SIMP_FINITE_BINTER_L}}||<math> \finite (S \binter T) \;\;\defi\;\; \finite (S) </math>|| || M | {{RRRow}}|||{{Rulename|SIMP_FINITE_BINTER_L}}||<math> \finite (S \binter T) \;\;\defi\;\; \finite (S) </math>|| || M | ||
{{RRRow}}|||{{Rulename|SIMP_FINITE_BINTER_R}}||<math> \finite (S \binter T) \;\;\defi\;\; \finite (T) </math>|| || M | {{RRRow}}|||{{Rulename|SIMP_FINITE_BINTER_R}}||<math> \finite (S \binter T) \;\;\defi\;\; \finite (T) </math>|| || M | ||
Line 141: | Line 143: | ||
{{RRRow}}|*||{{Rulename|SIMP_FINITE_BOOL}}||<math> \finite (\Bool ) \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_FINITE_BOOL}}||<math> \finite (\Bool ) \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_FINITE_LAMBDA}}||<math> \finite(\{x\qdot P\mid E\mapsto F\}) \;\;\defi\;\; \finite(\{x\qdot P\mid E\} ) </math>|| where <math>E</math> is a maplet combination of bound identifiers and expressions that are not bound by the comprehension set (i.e., <math>E</math> is syntactically injective) and all identifiers bound by the comprehension set that occur in <math>F</math> also occur in <math>E</math> || A | {{RRRow}}|*||{{Rulename|SIMP_FINITE_LAMBDA}}||<math> \finite(\{x\qdot P\mid E\mapsto F\}) \;\;\defi\;\; \finite(\{x\qdot P\mid E\} ) </math>|| where <math>E</math> is a maplet combination of bound identifiers and expressions that are not bound by the comprehension set (i.e., <math>E</math> is syntactically injective) and all identifiers bound by the comprehension set that occur in <math>F</math> also occur in <math>E</math> || A | ||
{{RRRow}}|*||{{Rulename|SIMP_TYPE_IN}}||<math> t \in \mathit{Ty} \;\;\defi\;\; \btrue </math>|| where <math>\mathit{Ty}</math> is a type expression || A | {{RRRow}}|*||{{Rulename|SIMP_TYPE_IN}}||<math> t \in \mathit{Ty} \;\;\defi\;\; \btrue </math>|| where <math>\mathit{Ty}</math> is a type expression || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EQV_BTRUE}}||<math> P \leqv \btrue \;\;\defi\;\; P </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EQV_BTRUE}}||<math> P \leqv \btrue \;\;\defi\;\; P </math>|| || A | ||
Line 166: | Line 167: | ||
{{RRRow}}|*||{{Rulename|DERIV_NOT_FORALL}}||<math> \lnot\, \forall x \qdot P \;\;\defi\;\; \exists x \qdot \lnot\, P </math>|| || M | {{RRRow}}|*||{{Rulename|DERIV_NOT_FORALL}}||<math> \lnot\, \forall x \qdot P \;\;\defi\;\; \exists x \qdot \lnot\, P </math>|| || M | ||
{{RRRow}}|*||{{Rulename|DERIV_NOT_EXISTS}}||<math> \lnot\, \exists x \qdot P \;\;\defi\;\; \forall x \qdot \lnot\, P </math>|| || M | {{RRRow}}|*||{{Rulename|DERIV_NOT_EXISTS}}||<math> \lnot\, \exists x \qdot P \;\;\defi\;\; \forall x \qdot \lnot\, P </math>|| || M | ||
{{RRRow}}|*||{{Rulename|DEF_IN_MAPSTO}}||<math> E \mapsto F \in S \cprod T \;\;\defi\;\; E \in S \land F \in T </math>|| || AM | |||
{{RRRow}}|*||{{Rulename|DEF_IN_MAPSTO}}||<math> E \mapsto F \in S \cprod T \;\;\defi\;\; E \in S \land F \in T </math>|| || | |||
{{RRRow}}|*||{{Rulename|DEF_IN_POW}}||<math> E \in \pow (S) \;\;\defi\;\; E \subseteq S </math>|| || M | {{RRRow}}|*||{{Rulename|DEF_IN_POW}}||<math> E \in \pow (S) \;\;\defi\;\; E \subseteq S </math>|| || M | ||
{{RRRow}}|*||{{Rulename|DEF_IN_POW1}}||<math> E \in \pown (S) \;\;\defi\;\; E \in \pow (S) \land S \neq \emptyset </math>|| || M | {{RRRow}}|*||{{Rulename|DEF_IN_POW1}}||<math> E \in \pown (S) \;\;\defi\;\; E \in \pow (S) \land S \neq \emptyset </math>|| || M | ||
Line 203: | Line 203: | ||
\land& s_{n-1}\binter s_n = \emptyset | \land& s_{n-1}\binter s_n = \emptyset | ||
\end{array}</math>|| || AM | \end{array}</math>|| || AM | ||
{{RRRow}}|*||{{Rulename|SIMP_EMPTY_PARTITION}}||<math>\operatorname{partition}(S) \;\;\defi\;\; S = \emptyset </math>|| || A | |||
{{RRRow}}|*||{{Rulename|SIMP_SINGLE_PARTITION}}||<math>\operatorname{partition}(S, T) \;\;\defi\;\; S = T </math>|| || A | |||
{{RRRow}}|*||{{Rulename|DEF_EQUAL_CARD}}||<math>\operatorname{card}(S) = k \;\;\defi\;\; \exists f \qdot f \in 1..k \tbij S</math>|| also works for <math>k = \operatorname{card}(S)</math> || M | |||
{{RRRow}}|*||{{Rulename|SIMP_EQUAL_CARD}}||<math>\operatorname{card}(S) = \operatorname{card}(T) \;\;\defi\;\; \exists f \qdot f \in S \tbij T</math>|| || M | |||
|} | |} | ||
Latest revision as of 14:33, 13 April 2023
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Rewrite_Rules.
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | SIMP_SPECIAL_AND_BTRUE |
A | ||
* | SIMP_SPECIAL_AND_BFALSE |
A | ||
* | SIMP_MULTI_AND |
A | ||
* | SIMP_MULTI_AND_NOT |
A | ||
* | SIMP_SPECIAL_OR_BTRUE |
A | ||
* | SIMP_SPECIAL_OR_BFALSE |
A | ||
* | SIMP_MULTI_OR |
A | ||
* | SIMP_MULTI_OR_NOT |
A | ||
* | SIMP_SPECIAL_IMP_BTRUE_R |
A | ||
* | SIMP_SPECIAL_IMP_BTRUE_L |
A | ||
* | SIMP_SPECIAL_IMP_BFALSE_R |
A | ||
* | SIMP_SPECIAL_IMP_BFALSE_L |
A | ||
* | SIMP_MULTI_IMP |
A | ||
* | SIMP_MULTI_IMP_NOT_L |
A | ||
* | SIMP_MULTI_IMP_NOT_R |
A | ||
* | SIMP_MULTI_IMP_AND |
A | ||
* | SIMP_MULTI_IMP_AND_NOT_R |
A | ||
* | SIMP_MULTI_IMP_AND_NOT_L |
A | ||
* | SIMP_MULTI_EQV |
A | ||
* | SIMP_MULTI_EQV_NOT |
A | ||
* | SIMP_SPECIAL_NOT_BTRUE |
A | ||
* | SIMP_SPECIAL_NOT_BFALSE |
A | ||
* | SIMP_NOT_NOT |
AM | ||
* | SIMP_NOTEQUAL |
A | ||
* | SIMP_NOTIN |
A | ||
* | SIMP_NOTSUBSET |
A | ||
* | SIMP_NOTSUBSETEQ |
A | ||
* | SIMP_NOT_LE |
A | ||
* | SIMP_NOT_GE |
A | ||
* | SIMP_NOT_LT |
A | ||
* | SIMP_NOT_GT |
A | ||
* | SIMP_SPECIAL_NOT_EQUAL_FALSE_R |
A | ||
* | SIMP_SPECIAL_NOT_EQUAL_FALSE_L |
A | ||
* | SIMP_SPECIAL_NOT_EQUAL_TRUE_R |
A | ||
* | SIMP_SPECIAL_NOT_EQUAL_TRUE_L |
A | ||
* | SIMP_FORALL_AND |
A | ||
* | SIMP_EXISTS_OR |
A | ||
* | SIMP_EXISTS_IMP |
A | ||
* | SIMP_FORALL |
Quantified identifiers other than do not occur in | A | |
* | SIMP_EXISTS |
Quantified identifiers other than do not occur in | A | |
* | SIMP_MULTI_EQUAL |
A | ||
* | SIMP_MULTI_NOTEQUAL |
A | ||
* | SIMP_EQUAL_MAPSTO |
A | ||
* | SIMP_EQUAL_SING |
A | ||
* | SIMP_SPECIAL_EQUAL_TRUE |
A | ||
* | SIMP_TYPE_SUBSETEQ |
where is a type expression | A | |
* | SIMP_SUBSETEQ_SING |
where is a single expression | A | |
* | SIMP_SPECIAL_SUBSETEQ |
A | ||
* | SIMP_MULTI_SUBSETEQ |
A | ||
* | SIMP_SUBSETEQ_BUNION |
A | ||
* | SIMP_SUBSETEQ_BINTER |
A | ||
* | DERIV_SUBSETEQ_BUNION |
A | ||
* | DERIV_SUBSETEQ_BINTER |
A | ||
* | SIMP_SPECIAL_IN |
A | ||
* | SIMP_MULTI_IN |
A | ||
* | SIMP_IN_SING |
A | ||
* | SIMP_MULTI_SETENUM |
A | ||
* | SIMP_SPECIAL_BINTER |
A | ||
* | SIMP_TYPE_BINTER |
where is a type expression | A | |
* | SIMP_MULTI_BINTER |
A | ||
* | SIMP_MULTI_EQUAL_BINTER |
A | ||
* | SIMP_SPECIAL_BUNION |
A | ||
* | SIMP_TYPE_BUNION |
where is a type expression | A | |
* | SIMP_MULTI_BUNION |
A | ||
* | SIMP_MULTI_EQUAL_BUNION |
A | ||
* | SIMP_MULTI_SETMINUS |
A | ||
* | SIMP_SPECIAL_SETMINUS_R |
A | ||
* | SIMP_SPECIAL_SETMINUS_L |
A | ||
* | SIMP_TYPE_SETMINUS |
where is a type expression | A | |
* | SIMP_TYPE_SETMINUS_SETMINUS |
where is a type expression | A | |
* | SIMP_KUNION_POW |
A | ||
* | SIMP_KUNION_POW1 |
A | ||
* | SIMP_SPECIAL_KUNION |
A | ||
* | SIMP_SPECIAL_QUNION |
A | ||
* | SIMP_SPECIAL_KINTER |
A | ||
* | SIMP_KINTER_POW |
A | ||
* | SIMP_SPECIAL_POW |
A | ||
* | SIMP_SPECIAL_POW1 |
A | ||
* | SIMP_SPECIAL_CPROD_R |
A | ||
* | SIMP_SPECIAL_CPROD_L |
A | ||
SIMP_COMPSET_EQUAL |
where non free in and non free in | A | ||
* | SIMP_COMPSET_IN |
where non free in | A | |
* | SIMP_COMPSET_SUBSETEQ |
where non free in | A | |
* | SIMP_SPECIAL_COMPSET_BFALSE |
A | ||
* | SIMP_SPECIAL_COMPSET_BTRUE |
where the type of is and is a maplet combination of locally-bound, pairwise-distinct bound identifiers | A | |
* | SIMP_SUBSETEQ_COMPSET_L |
where is fresh | A | |
* | SIMP_IN_COMPSET |
where , , are not free in | A | |
* | SIMP_IN_COMPSET_ONEPOINT |
Equivalent to general simplification followed by One Point Rule application with the last conjunct predicate | A | |
SIMP_SUBSETEQ_COMPSET_R |
where non free in | M | ||
* | SIMP_SPECIAL_OVERL |
A | ||
* | SIMP_SPECIAL_KBOOL_BTRUE |
A | ||
* | SIMP_SPECIAL_KBOOL_BFALSE |
A | ||
DISTRI_SUBSETEQ_BUNION_SING |
where is a single expression | M | ||
* | DEF_FINITE |
M | ||
* | SIMP_SPECIAL_FINITE |
A | ||
* | SIMP_FINITE_SETENUM |
A | ||
* | SIMP_FINITE_BUNION |
A | ||
* | SIMP_FINITE_POW |
A | ||
* | DERIV_FINITE_CPROD |
A | ||
* | SIMP_FINITE_CONVERSE |
A | ||
* | SIMP_FINITE_UPTO |
A | ||
* | SIMP_FINITE_ID |
where has type | A | |
* | SIMP_FINITE_ID_DOMRES |
A | ||
* | SIMP_FINITE_PRJ1 |
where has type | A | |
* | SIMP_FINITE_PRJ2 |
where has type | A | |
* | SIMP_FINITE_PRJ1_DOMRES |
A | ||
* | SIMP_FINITE_PRJ2_DOMRES |
A | ||
* | SIMP_FINITE_NATURAL |
A | ||
* | SIMP_FINITE_NATURAL1 |
A | ||
* | SIMP_FINITE_INTEGER |
A | ||
* | SIMP_FINITE_BOOL |
A | ||
* | SIMP_FINITE_LAMBDA |
where is a maplet combination of bound identifiers and expressions that are not bound by the comprehension set (i.e., is syntactically injective) and all identifiers bound by the comprehension set that occur in also occur in | A | |
* | SIMP_TYPE_IN |
where is a type expression | A | |
* | SIMP_SPECIAL_EQV_BTRUE |
A | ||
* | SIMP_SPECIAL_EQV_BFALSE |
A | ||
* | DEF_SUBSET |
A | ||
* | SIMP_SPECIAL_SUBSET_R |
A | ||
* | SIMP_SPECIAL_SUBSET_L |
A | ||
* | SIMP_TYPE_SUBSET_L |
where is a type expression | A | |
* | SIMP_MULTI_SUBSET |
A | ||
* | SIMP_EQUAL_CONSTR |
where is a datatype constructor | A | |
* | SIMP_EQUAL_CONSTR_DIFF |
where and are different datatype constructors | A | |
* | SIMP_DESTR_CONSTR |
where is the datatype destructor for the i-th argument of datatype constructor | A | |
* | DISTRI_AND_OR |
M | ||
* | DISTRI_OR_AND |
M | ||
* | DEF_OR |
M | ||
* | DERIV_IMP |
M | ||
* | DERIV_IMP_IMP |
M | ||
* | DISTRI_IMP_AND |
M | ||
* | DISTRI_IMP_OR |
M | ||
* | DEF_EQV |
M | ||
* | DISTRI_NOT_AND |
M | ||
* | DISTRI_NOT_OR |
M | ||
* | DERIV_NOT_IMP |
M | ||
* | DERIV_NOT_FORALL |
M | ||
* | DERIV_NOT_EXISTS |
M | ||
* | DEF_IN_MAPSTO |
AM | ||
* | DEF_IN_POW |
M | ||
* | DEF_IN_POW1 |
M | ||
* | DEF_SUBSETEQ |
where is not free in or | M | |
* | DEF_IN_BUNION |
M | ||
* | DEF_IN_BINTER |
M | ||
* | DEF_IN_SETMINUS |
M | ||
* | DEF_IN_SETENUM |
M | ||
* | DEF_IN_KUNION |
where is fresh | M | |
* | DEF_IN_QUNION |
where is fresh | M | |
* | DEF_IN_KINTER |
where is fresh | M | |
* | DEF_IN_QINTER |
where is fresh | M | |
* | DEF_IN_UPTO |
M | ||
* | DISTRI_BUNION_BINTER |
M | ||
* | DISTRI_BINTER_BUNION |
M | ||
DISTRI_BINTER_SETMINUS |
M | |||
DISTRI_SETMINUS_BUNION |
M | |||
* | DERIV_TYPE_SETMINUS_BINTER |
where is a type expression | M | |
* | DERIV_TYPE_SETMINUS_BUNION |
where is a type expression | M | |
* | DERIV_TYPE_SETMINUS_SETMINUS |
where is a type expression | M | |
DISTRI_CPROD_BINTER |
M | |||
DISTRI_CPROD_BUNION |
M | |||
DISTRI_CPROD_SETMINUS |
M | |||
* | DERIV_SUBSETEQ |
where is the type of and | M | |
* | DERIV_EQUAL |
where is the type of and | M | |
* | DERIV_SUBSETEQ_SETMINUS_L |
M | ||
* | DERIV_SUBSETEQ_SETMINUS_R |
M | ||
* | DEF_PARTITION |
AM | ||
* | SIMP_EMPTY_PARTITION |
A | ||
* | SIMP_SINGLE_PARTITION |
A | ||
* | DEF_EQUAL_CARD |
also works for | M | |
* | SIMP_EQUAL_CARD |
M |