Relation Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Frederic No edit summary |
Rules DEF_EQUAL_FUN_IMAGE and SIMP_SPECIAL_IN_*ID have been implemented in Rodin 3.9 |
||
(96 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
Rules that are marked with a <tt>*</tt> in the first column are implemented in the latest version of Rodin. | |||
Rules without a <tt>*</tt> are planned to be implemented in future versions. | |||
Other conventions used in these tables are described in [[The_Proving_Perspective_%28Rodin_User_Manual%29#Rewrite_Rules]]. | |||
{{RRHeader}} | {{RRHeader}} | ||
{{RRRow}}|*||{{Rulename|SIMP_DOM_SETENUM}}||<math> \dom (\{ x \mapsto a, \ldots , y \mapsto b\} ) \;\;\defi\;\; \{ x, \ldots , y\} </math>|| || A | |||
{{RRRow}}|*||{{Rulename|SIMP_DOM_CONVERSE}}||<math> \dom (r^{-1} ) \;\;\defi\;\; \ran (r) </math>|| || A | |||
{{RRRow}}|*|| | |||
f \in S \pfun T & \defi & f \in S \rel T \\ & \land & (\forall x,y,z \qdot x \mapsto y \in f \land x \mapsto z \in f \limp y = z) \\ \end{array} </math>|| || M | f \in S \pfun T & \defi & f \in S \rel T \\ & \land & (\forall x,y,z \qdot x \mapsto y \in f \land x \mapsto z \in f \limp y = z) \\ \end{array} </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DEF_IN_TFCT}}||<math> f \in S \tfun T \;\;\defi\;\; f \in S \pfun T \land \dom (f) = S </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DEF_IN_INJ}}||<math> f \in S \pinj T \;\;\defi\;\; f \in S \pfun T \land f^{-1} \in T \pfun S </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DEF_IN_TINJ}}||<math> f \in S \tinj T \;\;\defi\;\; f \in S \pinj T \land \dom (f) = S </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DEF_IN_SURJ}}||<math> f \in S \psur T \;\;\defi\;\; f \in S \pfun T \land \ran (f) = T </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DEF_IN_TSURJ}}||<math> f \in S \tsur T \;\;\defi\;\; f \in S \psur T \land \dom (f) = S </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DEF_IN_BIJ}}||<math> f \in S \tbij T \;\;\defi\;\; f \in S \tinj T \land \ran (f) = T </math>|| || M | ||
{{RRRow}}| | {{RRRow}}| ||{{Rulename|DISTRI_BCOMP_BUNION}}||<math> r \bcomp (s \bunion t) \;\;\defi\;\; (r \bcomp s) \bunion (r \bcomp t) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_FCOMP_BUNION_R}}||<math> p \fcomp (q \bunion r) \;\;\defi\;\; (p \fcomp q) \bunion (p \fcomp r) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_FCOMP_BUNION_L}}||<math> (q \bunion r) \fcomp p \;\;\defi\;\; (q \fcomp p) \bunion (r \fcomp p) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_DPROD_BUNION}}||<math> r \dprod (s \bunion t) \;\;\defi\;\; (r \dprod s) \bunion (r \dprod t) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_DPROD_BINTER}}||<math> r \dprod (s \binter t) \;\;\defi\;\; (r \dprod s) \binter (r \dprod t) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_DPROD_SETMINUS}}||<math> r \dprod (s \setminus t) \;\;\defi\;\; (r \dprod s) \setminus (r \dprod t) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_DPROD_OVERL}}||<math> r \dprod (s \ovl t) \;\;\defi\;\; (r \dprod s) \ovl (r \dprod t) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_PPROD_BUNION}}||<math> r \pprod (s \bunion t) \;\;\defi\;\; (r \pprod s) \bunion (r \pprod t) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_PPROD_BINTER}}||<math> r \pprod (s \binter t) \;\;\defi\;\; (r \pprod s) \binter (r \pprod t) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_PPROD_SETMINUS}}||<math> r \pprod (s \setminus t) \;\;\defi\;\; (r \pprod s) \setminus (r \pprod t) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_PPROD_OVERL}}||<math> r \pprod (s \ovl t) \;\;\defi\;\; (r \pprod s) \ovl (r \pprod t) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_OVERL_BUNION_L}}||<math> (p \bunion q) \ovl r \;\;\defi\;\; (p \ovl r) \bunion (q \ovl r) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_OVERL_BINTER_L}}||<math> (p \binter q) \ovl r \;\;\defi\;\; (p \ovl r) \binter (q \ovl r) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_BUNION_R}}||<math> s \domres (p \bunion q) \;\;\defi\;\; (s \domres p) \bunion (s \domres q) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_BUNION_L}}||<math> (s \bunion t) \domres r \;\;\defi\;\; (s \domres r) \bunion (t \domres r) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_BINTER_R}}||<math> s \domres (p \binter q) \;\;\defi\;\; (s \domres p) \binter (s \domres q) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_BINTER_L}}||<math> (s \binter t) \domres r \;\;\defi\;\; (s \domres r) \binter (t \domres r) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_DOMRES_SETMINUS_R}}||<math> s \domres (p \setminus q) \;\;\defi\;\; (s \domres p) \setminus (s \domres q) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_DOMRES_SETMINUS_L}}||<math> (s \setminus t) \domres r \;\;\defi\;\; (s \domres r) \setminus (t \domres r) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_DOMRES_DPROD}}||<math> s \domres (p \dprod q) \;\;\defi\;\; (s \domres p) \dprod (s \domres q) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_DOMRES_OVERL}}||<math> s \domres (r \ovl q) \;\;\defi\;\; (s \domres r) \ovl (s \domres q) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_DOMSUB_BUNION_R}}||<math> s \domsub (p \bunion q) \;\;\defi\;\; (s \domsub p) \bunion (s \domsub q) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_DOMSUB_BUNION_L}}||<math> (s \bunion t) \domsub r \;\;\defi\;\; (s \domsub r) \binter (t \domsub r) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_DOMSUB_BINTER_R}}||<math> s \domsub (p \binter q) \;\;\defi\;\; (s \domsub p) \binter (s \domsub q) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_DOMSUB_BINTER_L}}||<math> (s \binter t) \domsub r \;\;\defi\;\; (s \domsub r) \bunion (t \domsub r) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_DOMSUB_DPROD}}||<math> A \domsub (r \dprod s) \;\;\defi\;\; (A \domsub r) \dprod (A \domsub s) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_DOMSUB_OVERL}}||<math> A \domsub (r \ovl s) \;\;\defi\;\; (A \domsub r) \ovl (A \domsub s) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_RANRES_BUNION_R}}||<math> r \ranres (s \bunion t) \;\;\defi\;\; (r \ranres s) \bunion (r \ranres t) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_RANRES_BUNION_L}}||<math> (p \bunion q) \ranres s \;\;\defi\;\; (p \ranres s) \bunion (q \ranres s) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_RANRES_BINTER_R}}||<math> r \ranres (s \binter t) \;\;\defi\;\; (r \ranres s) \binter (r \ranres t) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_RANRES_BINTER_L}}||<math> (p \binter q) \ranres s \;\;\defi\;\; (p \ranres s) \binter (q \ranres s) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_RANRES_SETMINUS_R}}||<math> r \ranres (s \setminus t) \;\;\defi\;\; (r \ranres s) \setminus (r \ranres t) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_RANRES_SETMINUS_L}}||<math> (p \setminus q) \ranres s \;\;\defi\;\; (p \ranres s) \setminus (q \ranres s) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_RANSUB_BUNION_R}}||<math> r \ransub (s\bunion t) \;\;\defi\;\; (r \ransub s) \binter (r \ransub t) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_RANSUB_BUNION_L}}||<math> (p \bunion q) \ransub s \;\;\defi\;\; (p \ransub s) \bunion (q \ransub s) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_RANSUB_BINTER_R}}||<math> r \ransub (s \binter t) \;\;\defi\;\; (r \ransub s) \bunion (r \ransub t) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_RANSUB_BINTER_L}}||<math> (p \binter q) \ransub s \;\;\defi\;\; (p \ransub s) \binter (q \ransub s) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_BUNION}}||<math> (p \bunion q)^{-1} \;\;\defi\;\; p^{-1} \bunion q^{-1} </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_CONVERSE_BINTER}}||<math> (p \binter q)^{-1} \;\;\defi\;\; p^{-1} \binter q^{-1} </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_CONVERSE_SETMINUS}}||<math> (r \setminus s)^{-1} \;\;\defi\;\; r^{-1} \setminus s^{-1} </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_CONVERSE_BCOMP}}||<math> (r \bcomp s)^{-1} \;\;\defi\;\; (s^{-1} \bcomp r^{-1} ) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_CONVERSE_FCOMP}}||<math> (p \fcomp q)^{-1} \;\;\defi\;\; (q^{-1} \fcomp p^{-1} ) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_CONVERSE_PPROD}}||<math> (r \pprod s)^{-1} \;\;\defi\;\; r^{-1} \pprod s^{-1} </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_CONVERSE_DOMRES}}||<math> (s \domres r)^{-1} \;\;\defi\;\; r^{-1} \ranres s </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_CONVERSE_DOMSUB}}||<math> (s \domsub r)^{-1} \;\;\defi\;\; r^{-1} \ransub s </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_CONVERSE_RANRES}}||<math> (r \ranres s)^{-1} \;\;\defi\;\; s \domres r^{-1} </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_CONVERSE_RANSUB}}||<math> (r \ransub s)^{-1} \;\;\defi\;\; s \domsub r^{-1} </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_DOM_BUNION}}||<math> \dom (r \bunion s) \;\;\defi\;\; \dom (r) \bunion \dom (s) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_RAN_BUNION}}||<math> \ran (r \bunion s) \;\;\defi\;\; \ran (r) \bunion \ran (s) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_RELIMAGE_BUNION_R}}||<math> r[S \bunion T] \;\;\defi\;\; r[S] \bunion r[T] </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DISTRI_RELIMAGE_BUNION_L}}||<math> (p \bunion q)[S] \;\;\defi\;\; p[S] \bunion q[S] </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|*||{{Rulename|DERIV_DOM_TOTALREL}}||<math> \dom (r) \;\;\defi\;\; E </math> || with hypothesis <math>r \in E \ \mathit{op}\ F</math>, where <math>\mathit{op}</math> is one of <math>\trel, \strel, \tfun, \tinj, \tsur, \tbij</math> || M | ||
{{RRRow}}| ||{{Rulename|DERIV_RAN_SURJREL}}||<math> \ran (r) \;\;\defi\;\; F </math> || with hypothesis <math>r \in E \ \mathit{op}\ F</math>, where <math>\mathit{op}</math> is one of <math>\srel,\strel, \psur, \tsur, \tbij</math> || M | |||
{{ | {{RRRow}}|*||{{Rulename|DERIV_PRJ1_SURJ}}||<math>\prjone \in\mathit{Ty}_1\ \mathit{op}\ \mathit{Ty}_2\;\;\defi\;\; \btrue </math> || where <math>\mathit{Ty}_1</math> and <math>\mathit{Ty}_2</math> are types and <math>\mathit{op}</math> is one of <math>\rel, \trel, \srel, \strel, \pfun, \tfun, \psur, \tsur </math> || A | ||
{{RRRow}}|*||{{Rulename|DERIV_PRJ2_SURJ}}||<math>\prjtwo \in\mathit{Ty}_1\ \mathit{op}\ \mathit{Ty}_2\;\;\defi\;\; \btrue </math> || where <math>\mathit{Ty}_1</math> and <math>\mathit{Ty}_2</math> are types and <math>\mathit{op}</math> is one of <math>\rel, \trel, \srel, \strel, \pfun, \tfun, \psur, \tsur </math> || A | |||
{{RRRow}}|*||{{Rulename|DERIV_ID_BIJ}}||<math>\id \in\mathit{Ty}\ \mathit{op}\ \mathit{Ty}\;\;\defi\;\; \btrue </math> || where <math>\mathit{Ty}</math> is a type and <math>\mathit{op}</math> is any arrow || A | |||
{{RRRow}}|*||{{Rulename|SIMP_MAPSTO_PRJ1_PRJ2}}||<math>\prjone(E)\mapsto\prjtwo(E)\;\;\defi\;\; E </math> || || A | |||
{{RRRow}}| ||{{Rulename|DERIV_EXPAND_PRJS}}||<math> E \;\;\defi\;\; \prjone(E) \mapsto \prjtwo(E) </math> || || M | |||
{{RRRow}}|*||{{Rulename|SIMP_DOM_SUCC}}||<math>\dom(\usucc) \;\;\defi\;\; \intg</math> || || A | |||
{{RRRow}}|*||{{Rulename|SIMP_RAN_SUCC}}||<math>\ran(\usucc) \;\;\defi\;\; \intg</math> || || A | |||
{{RRRow}}|*||{{Rulename|DERIV_MULTI_IN_BUNION}}||<math> E\in A\bunion\cdots\bunion\left\{\cdots, E,\cdots\right\}\bunion\cdots\bunion B\;\;\defi\;\; \btrue</math> || || A | |||
{{RRRow}}|*||{{Rulename|DERIV_MULTI_IN_SETMINUS}}||<math> E\in S\setminus\left\{\cdots, E,\cdots\right\} \;\;\defi\;\; \bfalse</math> || || A | |||
{{RRRow}}|*||{{Rulename|DEF_PRED}}||<math> \upred\;\;\defi\;\; \usucc^{-1}</math> || || A | |||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_IN_ID}}||<math> E \mapsto E \in \id \;\;\defi\;\; \btrue</math> || || A | |||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_IN_SETMINUS_ID}}||<math>E \mapsto E \in r \setminus \id \;\;\defi\;\; \bfalse</math> || || A | |||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_IN_DOMRES_ID}}||<math>E \mapsto E \in S \domres \id \;\;\defi\;\; E \in S</math> || || A | |||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_IN_SETMINUS_DOMRES_ID}}||<math>E \mapsto E \in r \setminus (S \domres \id) \;\;\defi\;\; E \mapsto E \in S \domsub r</math> || || A | |||
|} | |} | ||
Latest revision as of 15:13, 3 June 2024
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Rewrite_Rules.
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | SIMP_DOM_SETENUM |
A | ||
* | SIMP_DOM_CONVERSE |
A | ||
* | SIMP_RAN_SETENUM |
A | ||
* | SIMP_RAN_CONVERSE |
A | ||
* | SIMP_SPECIAL_OVERL |
A | ||
* | SIMP_MULTI_OVERL |
there is a such that and and are syntactically equal. | A | |
* | SIMP_TYPE_OVERL_CPROD |
where is a type expression | A | |
* | SIMP_SPECIAL_DOMRES_L |
A | ||
* | SIMP_SPECIAL_DOMRES_R |
A | ||
* | SIMP_TYPE_DOMRES |
where is a type expression | A | |
* | SIMP_MULTI_DOMRES_DOM |
A | ||
* | SIMP_MULTI_DOMRES_RAN |
A | ||
* | SIMP_DOMRES_DOMRES_ID |
A | ||
* | SIMP_DOMRES_DOMSUB_ID |
A | ||
* | SIMP_SPECIAL_RANRES_R |
A | ||
* | SIMP_SPECIAL_RANRES_L |
A | ||
* | SIMP_TYPE_RANRES |
where is a type expression | A | |
* | SIMP_MULTI_RANRES_RAN |
A | ||
* | SIMP_MULTI_RANRES_DOM |
A | ||
* | SIMP_RANRES_ID |
A | ||
* | SIMP_RANSUB_ID |
A | ||
* | SIMP_RANRES_DOMRES_ID |
A | ||
* | SIMP_RANRES_DOMSUB_ID |
A | ||
* | SIMP_SPECIAL_DOMSUB_L |
A | ||
* | SIMP_SPECIAL_DOMSUB_R |
A | ||
* | SIMP_TYPE_DOMSUB |
where is a type expression | A | |
* | SIMP_MULTI_DOMSUB_DOM |
A | ||
* | SIMP_MULTI_DOMSUB_RAN |
A | ||
* | SIMP_DOMSUB_DOMRES_ID |
A | ||
* | SIMP_DOMSUB_DOMSUB_ID |
A | ||
* | SIMP_SPECIAL_RANSUB_R |
A | ||
* | SIMP_SPECIAL_RANSUB_L |
A | ||
* | SIMP_TYPE_RANSUB |
where is a type expression | A | |
* | SIMP_MULTI_RANSUB_DOM |
A | ||
* | SIMP_MULTI_RANSUB_RAN |
A | ||
* | SIMP_RANSUB_DOMRES_ID |
A | ||
* | SIMP_RANSUB_DOMSUB_ID |
A | ||
* | SIMP_SPECIAL_FCOMP |
A | ||
* | SIMP_TYPE_FCOMP_ID |
A | ||
* | SIMP_TYPE_FCOMP_R |
where is a type expression equal to | A | |
* | SIMP_TYPE_FCOMP_L |
where is a type expression equal to | A | |
* | SIMP_FCOMP_ID |
A | ||
* | SIMP_SPECIAL_BCOMP |
A | ||
* | SIMP_TYPE_BCOMP_ID |
A | ||
* | SIMP_TYPE_BCOMP_L |
where is a type expression equal to | A | |
* | SIMP_TYPE_BCOMP_R |
where is a type expression equal to | A | |
* | SIMP_BCOMP_ID |
A | ||
* | SIMP_SPECIAL_DPROD_R |
A | ||
* | SIMP_SPECIAL_DPROD_L |
A | ||
* | SIMP_DPROD_CPROD |
A | ||
* | SIMP_SPECIAL_PPROD_R |
A | ||
* | SIMP_SPECIAL_PPROD_L |
A | ||
* | SIMP_PPROD_CPROD |
A | ||
* | SIMP_SPECIAL_RELIMAGE_R |
A | ||
* | SIMP_SPECIAL_RELIMAGE_L |
A | ||
* | SIMP_TYPE_RELIMAGE |
where is a type expression | A | |
* | SIMP_MULTI_RELIMAGE_DOM |
A | ||
* | SIMP_RELIMAGE_ID |
A | ||
* | SIMP_RELIMAGE_DOMRES_ID |
A | ||
* | SIMP_RELIMAGE_DOMSUB_ID |
A | ||
* | SIMP_MULTI_RELIMAGE_CPROD_SING |
where is a single expression | A | |
* | SIMP_MULTI_RELIMAGE_SING_MAPSTO |
where is a single expression | A | |
* | SIMP_MULTI_RELIMAGE_CONVERSE_RANSUB |
A | ||
* | SIMP_MULTI_RELIMAGE_CONVERSE_RANRES |
A | ||
* | SIMP_RELIMAGE_CONVERSE_DOMSUB |
A | ||
DERIV_RELIMAGE_RANSUB |
M | |||
DERIV_RELIMAGE_RANRES |
M | |||
* | SIMP_MULTI_RELIMAGE_DOMSUB |
A | ||
DERIV_RELIMAGE_DOMSUB |
M | |||
DERIV_RELIMAGE_DOMRES |
M | |||
* | SIMP_SPECIAL_CONVERSE |
A | ||
* | SIMP_CONVERSE_ID |
A | ||
* | SIMP_CONVERSE_CPROD |
A | ||
* | SIMP_CONVERSE_SETENUM |
A | ||
* | SIMP_CONVERSE_COMPSET |
A | ||
* | SIMP_DOM_ID |
where has type | A | |
* | SIMP_RAN_ID |
where has type | A | |
* | SIMP_FCOMP_ID_L |
A | ||
* | SIMP_FCOMP_ID_R |
A | ||
* | SIMP_SPECIAL_REL_R |
idem for operators | A | |
* | SIMP_SPECIAL_REL_L |
idem for operators | A | |
* | SIMP_FUNIMAGE_PRJ1 |
A | ||
* | SIMP_FUNIMAGE_PRJ2 |
A | ||
* | SIMP_DOM_PRJ1 |
where has type | A | |
* | SIMP_DOM_PRJ2 |
where has type | A | |
* | SIMP_RAN_PRJ1 |
where has type | A | |
* | SIMP_RAN_PRJ2 |
where has type | A | |
* | SIMP_FUNIMAGE_LAMBDA |
A | ||
* | SIMP_DOM_LAMBDA |
A | ||
* | SIMP_RAN_LAMBDA |
A | ||
* | SIMP_IN_FUNIMAGE |
A | ||
* | SIMP_IN_FUNIMAGE_CONVERSE_L |
A | ||
* | SIMP_IN_FUNIMAGE_CONVERSE_R |
A | ||
* | SIMP_MULTI_FUNIMAGE_SETENUM_LL |
A | ||
* | SIMP_MULTI_FUNIMAGE_SETENUM_LR |
A | ||
* | SIMP_MULTI_FUNIMAGE_OVERL_SETENUM |
A | ||
* | SIMP_MULTI_FUNIMAGE_BUNION_SETENUM |
A | ||
* | SIMP_FUNIMAGE_CPROD |
A | ||
* | SIMP_FUNIMAGE_ID |
A | ||
* | SIMP_FUNIMAGE_FUNIMAGE_CONVERSE |
A | ||
* | SIMP_FUNIMAGE_CONVERSE_FUNIMAGE |
A | ||
* | SIMP_FUNIMAGE_FUNIMAGE_CONVERSE_SETENUM |
A | ||
* | SIMP_FUNIMAGE_DOMRES |
with hypothesis where is one of , , , , , , . | AM | |
* | SIMP_FUNIMAGE_DOMSUB |
with hypothesis where is one of , , , , , , . | AM | |
* | SIMP_FUNIMAGE_RANRES |
with hypothesis where is one of , , , , , , . | AM | |
* | SIMP_FUNIMAGE_RANSUB |
with hypothesis where is one of , , , , , , . | AM | |
* | SIMP_FUNIMAGE_SETMINUS |
with hypothesis where is one of , , , , , , . | AM | |
* | DEF_EQUAL_FUNIMAGE |
M | ||
* | DEF_BCOMP |
M | ||
DERIV_ID_SING |
where is a single expression | M | ||
* | SIMP_SPECIAL_DOM |
A | ||
* | SIMP_SPECIAL_RAN |
A | ||
* | SIMP_CONVERSE_CONVERSE |
A | ||
* | DERIV_RELIMAGE_FCOMP |
M | ||
* | DERIV_FCOMP_DOMRES |
M | ||
* | DERIV_FCOMP_DOMSUB |
M | ||
* | DERIV_FCOMP_RANRES |
M | ||
* | DERIV_FCOMP_RANSUB |
M | ||
DERIV_FCOMP_SING |
A | |||
* | SIMP_SPECIAL_EQUAL_RELDOMRAN |
idem for operators | A | |
* | SIMP_TYPE_DOM |
where is a type expression equal to | A | |
* | SIMP_TYPE_RAN |
where is a type expression equal to | A | |
* | SIMP_MULTI_DOM_CPROD |
A | ||
* | SIMP_MULTI_RAN_CPROD |
A | ||
* | SIMP_MULTI_DOM_DOMRES |
A | ||
* | SIMP_MULTI_DOM_DOMSUB |
A | ||
* | SIMP_MULTI_RAN_RANRES |
A | ||
* | SIMP_MULTI_RAN_RANSUB |
A | ||
* | DEF_IN_DOM |
M | ||
* | DEF_IN_RAN |
M | ||
* | DEF_IN_CONVERSE |
M | ||
* | DEF_IN_DOMRES |
M | ||
* | DEF_IN_RANRES |
M | ||
* | DEF_IN_DOMSUB |
M | ||
* | DEF_IN_RANSUB |
M | ||
* | DEF_IN_RELIMAGE |
M | ||
* | DEF_IN_FCOMP |
M | ||
* | DEF_OVERL |
M | ||
* | DEF_IN_ID |
M | ||
* | DEF_IN_DPROD |
M | ||
* | DEF_IN_PPROD |
M | ||
* | DEF_IN_REL |
M | ||
* | DEF_IN_RELDOM |
M | ||
* | DEF_IN_RELRAN |
M | ||
* | DEF_IN_RELDOMRAN |
M | ||
* | DEF_IN_FCT |
M | ||
* | DEF_IN_TFCT |
M | ||
* | DEF_IN_INJ |
M | ||
* | DEF_IN_TINJ |
M | ||
* | DEF_IN_SURJ |
M | ||
* | DEF_IN_TSURJ |
M | ||
* | DEF_IN_BIJ |
M | ||
DISTRI_BCOMP_BUNION |
M | |||
* | DISTRI_FCOMP_BUNION_R |
M | ||
* | DISTRI_FCOMP_BUNION_L |
M | ||
DISTRI_DPROD_BUNION |
M | |||
DISTRI_DPROD_BINTER |
M | |||
DISTRI_DPROD_SETMINUS |
M | |||
DISTRI_DPROD_OVERL |
M | |||
DISTRI_PPROD_BUNION |
M | |||
DISTRI_PPROD_BINTER |
M | |||
DISTRI_PPROD_SETMINUS |
M | |||
DISTRI_PPROD_OVERL |
M | |||
DISTRI_OVERL_BUNION_L |
M | |||
DISTRI_OVERL_BINTER_L |
M | |||
* | DISTRI_DOMRES_BUNION_R |
M | ||
* | DISTRI_DOMRES_BUNION_L |
M | ||
* | DISTRI_DOMRES_BINTER_R |
M | ||
* | DISTRI_DOMRES_BINTER_L |
M | ||
DISTRI_DOMRES_SETMINUS_R |
M | |||
DISTRI_DOMRES_SETMINUS_L |
M | |||
DISTRI_DOMRES_DPROD |
M | |||
DISTRI_DOMRES_OVERL |
M | |||
* | DISTRI_DOMSUB_BUNION_R |
M | ||
* | DISTRI_DOMSUB_BUNION_L |
M | ||
* | DISTRI_DOMSUB_BINTER_R |
M | ||
* | DISTRI_DOMSUB_BINTER_L |
M | ||
DISTRI_DOMSUB_DPROD |
M | |||
DISTRI_DOMSUB_OVERL |
M | |||
* | DISTRI_RANRES_BUNION_R |
M | ||
* | DISTRI_RANRES_BUNION_L |
M | ||
* | DISTRI_RANRES_BINTER_R |
M | ||
* | DISTRI_RANRES_BINTER_L |
M | ||
DISTRI_RANRES_SETMINUS_R |
M | |||
DISTRI_RANRES_SETMINUS_L |
M | |||
* | DISTRI_RANSUB_BUNION_R |
M | ||
* | DISTRI_RANSUB_BUNION_L |
M | ||
* | DISTRI_RANSUB_BINTER_R |
M | ||
* | DISTRI_RANSUB_BINTER_L |
M | ||
* | DISTRI_CONVERSE_BUNION |
M | ||
DISTRI_CONVERSE_BINTER |
M | |||
DISTRI_CONVERSE_SETMINUS |
M | |||
DISTRI_CONVERSE_BCOMP |
M | |||
DISTRI_CONVERSE_FCOMP |
M | |||
DISTRI_CONVERSE_PPROD |
M | |||
DISTRI_CONVERSE_DOMRES |
M | |||
DISTRI_CONVERSE_DOMSUB |
M | |||
DISTRI_CONVERSE_RANRES |
M | |||
DISTRI_CONVERSE_RANSUB |
M | |||
* | DISTRI_DOM_BUNION |
M | ||
* | DISTRI_RAN_BUNION |
M | ||
* | DISTRI_RELIMAGE_BUNION_R |
M | ||
* | DISTRI_RELIMAGE_BUNION_L |
M | ||
* | DERIV_DOM_TOTALREL |
with hypothesis , where is one of | M | |
DERIV_RAN_SURJREL |
with hypothesis , where is one of | M | ||
* | DERIV_PRJ1_SURJ |
where and are types and is one of | A | |
* | DERIV_PRJ2_SURJ |
where and are types and is one of | A | |
* | DERIV_ID_BIJ |
where is a type and is any arrow | A | |
* | SIMP_MAPSTO_PRJ1_PRJ2 |
A | ||
DERIV_EXPAND_PRJS |
M | |||
* | SIMP_DOM_SUCC |
A | ||
* | SIMP_RAN_SUCC |
A | ||
* | DERIV_MULTI_IN_BUNION |
A | ||
* | DERIV_MULTI_IN_SETMINUS |
A | ||
* | DEF_PRED |
A | ||
* | SIMP_SPECIAL_IN_ID |
A | ||
* | SIMP_SPECIAL_IN_SETMINUS_ID |
A | ||
* | SIMP_SPECIAL_IN_DOMRES_ID |
A | ||
* | SIMP_SPECIAL_IN_SETMINUS_DOMRES_ID |
A |