Relation Rewrite Rules: Difference between revisions
From Event-B
				
				
				Jump to navigationJump to search
				
				
| imported>Billaude  The four last rules already exist, but were not implemented. Instead of being manual, they are automatic. |  Rules DEF_EQUAL_FUN_IMAGE and SIMP_SPECIAL_IN_*ID have been implemented in Rodin 3.9 | ||
| (8 intermediate revisions by 3 users not shown) | |||
| Line 85: | Line 85: | ||
| {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_REL_R}}||<math>  S \rel  \emptyset  \;\;\defi\;\;  \{ \emptyset \} </math>|| idem for operators <math>\srel  \pfun  \pinj  \psur</math> ||  A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_REL_R}}||<math>  S \rel  \emptyset  \;\;\defi\;\;  \{ \emptyset \} </math>|| idem for operators <math>\srel  \pfun  \pinj  \psur</math> ||  A | ||
| {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_REL_L}}||<math>  \emptyset  \rel  S \;\;\defi\;\;  \{ \emptyset \} </math>|| idem for operators <math>\trel  \pfun  \tfun  \pinj  \tinj</math> ||  A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_REL_L}}||<math>  \emptyset  \rel  S \;\;\defi\;\;  \{ \emptyset \} </math>|| idem for operators <math>\trel  \pfun  \tfun  \pinj  \tinj</math> ||  A | ||
| {{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_PRJ1}}||<math>  \prjone (E \mapsto  F) \;\;\defi\;\;  E </math>||  ||  A | {{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_PRJ1}}||<math>  \prjone (E \mapsto  F) \;\;\defi\;\;  E </math>||  ||  A | ||
| {{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_PRJ2}}||<math>  \prjtwo (E \mapsto  F) \;\;\defi\;\;  F </math>||  ||  A | {{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_PRJ2}}||<math>  \prjtwo (E \mapsto  F) \;\;\defi\;\;  F </math>||  ||  A | ||
| Line 113: | Line 111: | ||
| {{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_RANSUB}}||<math>(F \ransub E)(G)\;\;\defi\;\;F(G)</math> ||  with hypothesis<math> F \in \mathit{A} \ \mathit{op}\  \mathit{B}</math> where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>.  || AM | {{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_RANSUB}}||<math>(F \ransub E)(G)\;\;\defi\;\;F(G)</math> ||  with hypothesis<math> F \in \mathit{A} \ \mathit{op}\  \mathit{B}</math> where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>.  || AM | ||
| {{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_SETMINUS}}||<math>(F \setminus E)(G)\;\;\defi\;\;F(G)</math> ||  with hypothesis<math> F \in \mathit{A} \ \mathit{op}\  \mathit{B}</math> where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>.  || AM | {{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_SETMINUS}}||<math>(F \setminus E)(G)\;\;\defi\;\;F(G)</math> ||  with hypothesis<math> F \in \mathit{A} \ \mathit{op}\  \mathit{B}</math> where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>.  || AM | ||
| {{RRRow}}|||{{Rulename|DEF_BCOMP}}||<math>  r \bcomp  \ldots  \bcomp  s \;\;\defi\;\;  s \fcomp \ldots  \fcomp r </math>||  ||  M | {{RRRow}}|*||{{Rulename|DEF_EQUAL_FUNIMAGE}}||<math> f(x) = y \;\;\defi\;\; x \mapsto y \in f </math>||  ||  M | ||
| {{RRRow}}|*||{{Rulename|DEF_BCOMP}}||<math>  r \bcomp  \ldots  \bcomp  s \;\;\defi\;\;  s \fcomp \ldots  \fcomp r </math>||  ||  M | |||
| {{RRRow}}|||{{Rulename|DERIV_ID_SING}}||<math>  \{ E\} \domres \id \;\;\defi\;\;  \{ E \mapsto  E\} </math>|| where <math>E</math> is a single expression ||  M | {{RRRow}}|||{{Rulename|DERIV_ID_SING}}||<math>  \{ E\} \domres \id \;\;\defi\;\;  \{ E \mapsto  E\} </math>|| where <math>E</math> is a single expression ||  M | ||
| {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_DOM}}||<math>  \dom (\emptyset ) \;\;\defi\;\;  \emptyset </math>||  ||  A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_DOM}}||<math>  \dom (\emptyset ) \;\;\defi\;\;  \emptyset </math>||  ||  A | ||
| Line 211: | Line 210: | ||
| {{RRRow}}|*||{{Rulename|DERIV_DOM_TOTALREL}}||<math>  \dom (r) \;\;\defi\;\;  E </math> || with hypothesis <math>r \in E \ \mathit{op}\  F</math>, where <math>\mathit{op}</math> is one of <math>\trel, \strel, \tfun, \tinj, \tsur, \tbij</math> ||  M | {{RRRow}}|*||{{Rulename|DERIV_DOM_TOTALREL}}||<math>  \dom (r) \;\;\defi\;\;  E </math> || with hypothesis <math>r \in E \ \mathit{op}\  F</math>, where <math>\mathit{op}</math> is one of <math>\trel, \strel, \tfun, \tinj, \tsur, \tbij</math> ||  M | ||
| {{RRRow}}| ||{{Rulename|DERIV_RAN_SURJREL}}||<math>  \ran (r) \;\;\defi\;\;  F </math> || with hypothesis <math>r \in E \ \mathit{op}\  F</math>, where <math>\mathit{op}</math> is one of <math>\srel,\strel, \psur, \tsur, \tbij</math> ||  M | {{RRRow}}| ||{{Rulename|DERIV_RAN_SURJREL}}||<math>  \ran (r) \;\;\defi\;\;  F </math> || with hypothesis <math>r \in E \ \mathit{op}\  F</math>, where <math>\mathit{op}</math> is one of <math>\srel,\strel, \psur, \tsur, \tbij</math> ||  M | ||
| {{RRRow}}| | {{RRRow}}|*||{{Rulename|DERIV_PRJ1_SURJ}}||<math>\prjone \in\mathit{Ty}_1\ \mathit{op}\ \mathit{Ty}_2\;\;\defi\;\; \btrue </math> || where <math>\mathit{Ty}_1</math> and <math>\mathit{Ty}_2</math> are types and <math>\mathit{op}</math> is one of <math>\rel, \trel, \srel, \strel, \pfun, \tfun, \psur, \tsur </math> ||  A | ||
| {{RRRow}}| | {{RRRow}}|*||{{Rulename|DERIV_PRJ2_SURJ}}||<math>\prjtwo \in\mathit{Ty}_1\ \mathit{op}\ \mathit{Ty}_2\;\;\defi\;\; \btrue </math> || where <math>\mathit{Ty}_1</math> and <math>\mathit{Ty}_2</math> are types and <math>\mathit{op}</math> is one of <math>\rel, \trel, \srel, \strel, \pfun, \tfun, \psur, \tsur </math> ||  A | ||
| {{RRRow}}|||{{Rulename| | {{RRRow}}|*||{{Rulename|DERIV_ID_BIJ}}||<math>\id \in\mathit{Ty}\ \mathit{op}\ \mathit{Ty}\;\;\defi\;\; \btrue </math> || where <math>\mathit{Ty}</math> is a type and <math>\mathit{op}</math> is any arrow ||  A | ||
| {{RRRow}}|*||{{Rulename|SIMP_MAPSTO_PRJ1_PRJ2}}||<math>\prjone(E)\mapsto\prjtwo(E)\;\;\defi\;\; E </math> ||  ||  A | |||
| {{RRRow}}| ||{{Rulename|DERIV_EXPAND_PRJS}}||<math> E \;\;\defi\;\; \prjone(E) \mapsto \prjtwo(E) </math> || ||  M | |||
| {{RRRow}}|*||{{Rulename|SIMP_DOM_SUCC}}||<math>\dom(\usucc) \;\;\defi\;\; \intg</math> || ||  A | {{RRRow}}|*||{{Rulename|SIMP_DOM_SUCC}}||<math>\dom(\usucc) \;\;\defi\;\; \intg</math> || ||  A | ||
| {{RRRow}}|*||{{Rulename|SIMP_RAN_SUCC}}||<math>\ran(\usucc) \;\;\defi\;\; \intg</math> || ||  A | {{RRRow}}|*||{{Rulename|SIMP_RAN_SUCC}}||<math>\ran(\usucc) \;\;\defi\;\; \intg</math> || ||  A | ||
| Line 219: | Line 220: | ||
| {{RRRow}}|*||{{Rulename|DERIV_MULTI_IN_SETMINUS}}||<math> E\in S\setminus\left\{\cdots, E,\cdots\right\} \;\;\defi\;\; \bfalse</math> || ||  A | {{RRRow}}|*||{{Rulename|DERIV_MULTI_IN_SETMINUS}}||<math> E\in S\setminus\left\{\cdots, E,\cdots\right\} \;\;\defi\;\; \bfalse</math> || ||  A | ||
| {{RRRow}}|*||{{Rulename|DEF_PRED}}||<math> \upred\;\;\defi\;\; \usucc^{-1}</math> || ||  A | {{RRRow}}|*||{{Rulename|DEF_PRED}}||<math> \upred\;\;\defi\;\; \usucc^{-1}</math> || ||  A | ||
| {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_IN_ID}}||<math> E \mapsto E \in \id \;\;\defi\;\; \btrue</math> || ||  A | |||
| {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_IN_SETMINUS_ID}}||<math>E \mapsto E \in r \setminus \id \;\;\defi\;\; \bfalse</math> || ||  A | |||
| {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_IN_DOMRES_ID}}||<math>E \mapsto E \in S \domres \id \;\;\defi\;\; E \in S</math> || ||  A | |||
| {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_IN_SETMINUS_DOMRES_ID}}||<math>E \mapsto E \in r \setminus (S \domres \id) \;\;\defi\;\; E \mapsto E \in S \domsub r</math> || ||  A | |||
| |} | |} | ||
Latest revision as of 15:13, 3 June 2024
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Rewrite_Rules.
| Name | Rule | Side Condition | A/M | |
|---|---|---|---|---|
| * | SIMP_DOM_SETENUM |  | A | |
| * | SIMP_DOM_CONVERSE |  | A | |
| * | SIMP_RAN_SETENUM |  | A | |
| * | SIMP_RAN_CONVERSE |  | A | |
| * | SIMP_SPECIAL_OVERL |  | A | |
| * | SIMP_MULTI_OVERL |  | there is a  such that  and  and  are syntactically equal. | A | 
| * | SIMP_TYPE_OVERL_CPROD |  | where  is a type expression | A | 
| * | SIMP_SPECIAL_DOMRES_L |  | A | |
| * | SIMP_SPECIAL_DOMRES_R |  | A | |
| * | SIMP_TYPE_DOMRES |  | where  is a type expression | A | 
| * | SIMP_MULTI_DOMRES_DOM |  | A | |
| * | SIMP_MULTI_DOMRES_RAN |  | A | |
| * | SIMP_DOMRES_DOMRES_ID |  | A | |
| * | SIMP_DOMRES_DOMSUB_ID |  | A | |
| * | SIMP_SPECIAL_RANRES_R |  | A | |
| * | SIMP_SPECIAL_RANRES_L |  | A | |
| * | SIMP_TYPE_RANRES |  | where  is a type expression | A | 
| * | SIMP_MULTI_RANRES_RAN |  | A | |
| * | SIMP_MULTI_RANRES_DOM |  | A | |
| * | SIMP_RANRES_ID |  | A | |
| * | SIMP_RANSUB_ID |  | A | |
| * | SIMP_RANRES_DOMRES_ID |  | A | |
| * | SIMP_RANRES_DOMSUB_ID |  | A | |
| * | SIMP_SPECIAL_DOMSUB_L |  | A | |
| * | SIMP_SPECIAL_DOMSUB_R |  | A | |
| * | SIMP_TYPE_DOMSUB |  | where  is a type expression | A | 
| * | SIMP_MULTI_DOMSUB_DOM |  | A | |
| * | SIMP_MULTI_DOMSUB_RAN |  | A | |
| * | SIMP_DOMSUB_DOMRES_ID |  | A | |
| * | SIMP_DOMSUB_DOMSUB_ID |  | A | |
| * | SIMP_SPECIAL_RANSUB_R |  | A | |
| * | SIMP_SPECIAL_RANSUB_L |  | A | |
| * | SIMP_TYPE_RANSUB |  | where  is a type expression | A | 
| * | SIMP_MULTI_RANSUB_DOM |  | A | |
| * | SIMP_MULTI_RANSUB_RAN |  | A | |
| * | SIMP_RANSUB_DOMRES_ID |  | A | |
| * | SIMP_RANSUB_DOMSUB_ID |  | A | |
| * | SIMP_SPECIAL_FCOMP |  | A | |
| * | SIMP_TYPE_FCOMP_ID |  | A | |
| * | SIMP_TYPE_FCOMP_R |  | where  is a type expression equal to  | A | 
| * | SIMP_TYPE_FCOMP_L |  | where  is a type expression equal to  | A | 
| * | SIMP_FCOMP_ID |  | A | |
| * | SIMP_SPECIAL_BCOMP |  | A | |
| * | SIMP_TYPE_BCOMP_ID |  | A | |
| * | SIMP_TYPE_BCOMP_L |  | where  is a type expression equal to  | A | 
| * | SIMP_TYPE_BCOMP_R |  | where  is a type expression equal to  | A | 
| * | SIMP_BCOMP_ID |  | A | |
| * | SIMP_SPECIAL_DPROD_R |  | A | |
| * | SIMP_SPECIAL_DPROD_L |  | A | |
| * | SIMP_DPROD_CPROD |  | A | |
| * | SIMP_SPECIAL_PPROD_R |  | A | |
| * | SIMP_SPECIAL_PPROD_L |  | A | |
| * | SIMP_PPROD_CPROD |  | A | |
| * | SIMP_SPECIAL_RELIMAGE_R | ![r[\emptyset ] \;\;\defi\;\;  \emptyset](/images/math/b/9/a/b9aaf14a5527d53ff1febab3e8883f03.png) | A | |
| * | SIMP_SPECIAL_RELIMAGE_L | ![\emptyset [S] \;\;\defi\;\;  \emptyset](/images/math/6/4/8/648fbd380df0ae4c5d64da8bef51ee2d.png) | A | |
| * | SIMP_TYPE_RELIMAGE | ![r[Ty] \;\;\defi\;\;  \ran (r)](/images/math/0/2/1/02153b3e9f952be7157a4d4e336374a7.png) | where  is a type expression | A | 
| * | SIMP_MULTI_RELIMAGE_DOM | ![r[\dom (r)] \;\;\defi\;\;  \ran (r)](/images/math/0/3/4/0346b1b9c1146a8343fa2d18e1732769.png) | A | |
| * | SIMP_RELIMAGE_ID | ![\id[T] \;\;\defi\;\;  T](/images/math/4/0/0/4009c72979487233368b217afa41d8ad.png) | A | |
| * | SIMP_RELIMAGE_DOMRES_ID | ![(S \domres \id)[T] \;\;\defi\;\;  S \binter  T](/images/math/b/e/2/be2ea9770f745da9730119cc0e6c7be3.png) | A | |
| * | SIMP_RELIMAGE_DOMSUB_ID | ![(S \domsub \id)[T] \;\;\defi\;\;  T \setminus S](/images/math/6/1/4/6143619949a6ea25351813e711f4f395.png) | A | |
| * | SIMP_MULTI_RELIMAGE_CPROD_SING | ![(\{ E\}  \cprod  S)[\{ E\} ] \;\;\defi\;\;  S](/images/math/c/5/2/c526fc7db223ce0bfe920622d54d64e0.png) | where  is a single expression | A | 
| * | SIMP_MULTI_RELIMAGE_SING_MAPSTO | ![\{ E \mapsto  F\} [\{ E\} ] \;\;\defi\;\;  \{ F\}](/images/math/e/2/c/e2c3111e1660139c0d07f75c30de0e5c.png) | where  is a single expression | A | 
| * | SIMP_MULTI_RELIMAGE_CONVERSE_RANSUB | ![(r \ransub  S)^{-1} [S] \;\;\defi\;\;  \emptyset](/images/math/0/d/8/0d87a3a40feb382450061c80f9ed103e.png) | A | |
| * | SIMP_MULTI_RELIMAGE_CONVERSE_RANRES | ![(r \ranres  S)^{-1} [S] \;\;\defi\;\;  r^{-1} [S]](/images/math/1/7/4/174952bb78d6d7afd42ee6a53ed2ac78.png) | A | |
| * | SIMP_RELIMAGE_CONVERSE_DOMSUB | ![(S \domsub  r)^{-1} [T] \;\;\defi\;\;  r^{-1} [T] \setminus S](/images/math/3/4/2/342512ec589776fd0aae93fe8eb732e6.png) | A | |
| DERIV_RELIMAGE_RANSUB | ![(r \ransub  S)[T] \;\;\defi\;\;  r[T] \setminus S](/images/math/5/9/3/5933212d9aad4f59b7641ea383b31a91.png) | M | ||
| DERIV_RELIMAGE_RANRES | ![(r \ranres  S)[T] \;\;\defi\;\;  r[T] \binter  S](/images/math/1/9/9/1994ec5d3fa539db498124fe8fd4a27d.png) | M | ||
| * | SIMP_MULTI_RELIMAGE_DOMSUB | ![(S \domsub  r)[S] \;\;\defi\;\;  \emptyset](/images/math/b/f/3/bf31fb9e2da1545464bd5baecc397c01.png) | A | |
| DERIV_RELIMAGE_DOMSUB | ![(S \domsub  r)[T] \;\;\defi\;\;  r[T \setminus S]](/images/math/f/2/4/f2407e5c136829c08c1bc390d74a77fe.png) | M | ||
| DERIV_RELIMAGE_DOMRES | ![(S \domres  r)[T] \;\;\defi\;\;  r[S \binter  T]](/images/math/8/4/0/840633e87abc3f54638ede200920f377.png) | M | ||
| * | SIMP_SPECIAL_CONVERSE |  | A | |
| * | SIMP_CONVERSE_ID |  | A | |
| * | SIMP_CONVERSE_CPROD |  | A | |
| * | SIMP_CONVERSE_SETENUM |  | A | |
| * | SIMP_CONVERSE_COMPSET |  | A | |
| * | SIMP_DOM_ID |  | where  has type  | A | 
| * | SIMP_RAN_ID |  | where  has type  | A | 
| * | SIMP_FCOMP_ID_L |  | A | |
| * | SIMP_FCOMP_ID_R |  | A | |
| * | SIMP_SPECIAL_REL_R |  | idem for operators  | A | 
| * | SIMP_SPECIAL_REL_L |  | idem for operators  | A | 
| * | SIMP_FUNIMAGE_PRJ1 |  | A | |
| * | SIMP_FUNIMAGE_PRJ2 |  | A | |
| * | SIMP_DOM_PRJ1 |  | where  has type  | A | 
| * | SIMP_DOM_PRJ2 |  | where  has type  | A | 
| * | SIMP_RAN_PRJ1 |  | where  has type  | A | 
| * | SIMP_RAN_PRJ2 |  | where  has type  | A | 
| * | SIMP_FUNIMAGE_LAMBDA |  | A | |
| * | SIMP_DOM_LAMBDA |  | A | |
| * | SIMP_RAN_LAMBDA |  | A | |
| * | SIMP_IN_FUNIMAGE |  | A | |
| * | SIMP_IN_FUNIMAGE_CONVERSE_L |  | A | |
| * | SIMP_IN_FUNIMAGE_CONVERSE_R |  | A | |
| * | SIMP_MULTI_FUNIMAGE_SETENUM_LL |  | A | |
| * | SIMP_MULTI_FUNIMAGE_SETENUM_LR |  | A | |
| * | SIMP_MULTI_FUNIMAGE_OVERL_SETENUM |  | A | |
| * | SIMP_MULTI_FUNIMAGE_BUNION_SETENUM |  | A | |
| * | SIMP_FUNIMAGE_CPROD |  | A | |
| * | SIMP_FUNIMAGE_ID |  | A | |
| * | SIMP_FUNIMAGE_FUNIMAGE_CONVERSE |  | A | |
| * | SIMP_FUNIMAGE_CONVERSE_FUNIMAGE |  | A | |
| * | SIMP_FUNIMAGE_FUNIMAGE_CONVERSE_SETENUM |  | A | |
| * | SIMP_FUNIMAGE_DOMRES |  | with hypothesis  where  is one of  ,  ,  ,  ,  ,  ,  . | AM | 
| * | SIMP_FUNIMAGE_DOMSUB |  | with hypothesis  where  is one of  ,  ,  ,  ,  ,  ,  . | AM | 
| * | SIMP_FUNIMAGE_RANRES |  | with hypothesis  where  is one of  ,  ,  ,  ,  ,  ,  . | AM | 
| * | SIMP_FUNIMAGE_RANSUB |  | with hypothesis  where  is one of  ,  ,  ,  ,  ,  ,  . | AM | 
| * | SIMP_FUNIMAGE_SETMINUS |  | with hypothesis  where  is one of  ,  ,  ,  ,  ,  ,  . | AM | 
| * | DEF_EQUAL_FUNIMAGE |  | M | |
| * | DEF_BCOMP |  | M | |
| DERIV_ID_SING |  | where  is a single expression | M | |
| * | SIMP_SPECIAL_DOM |  | A | |
| * | SIMP_SPECIAL_RAN |  | A | |
| * | SIMP_CONVERSE_CONVERSE |  | A | |
| * | DERIV_RELIMAGE_FCOMP | ![(p \fcomp q)[s] \;\;\defi\;\;  q[p[s]]](/images/math/d/5/2/d525cb240947f85af66b077f0894364c.png) | M | |
| * | DERIV_FCOMP_DOMRES |  | M | |
| * | DERIV_FCOMP_DOMSUB |  | M | |
| * | DERIV_FCOMP_RANRES |  | M | |
| * | DERIV_FCOMP_RANSUB |  | M | |
| DERIV_FCOMP_SING |  | A | ||
| * | SIMP_SPECIAL_EQUAL_RELDOMRAN |  | idem for operators  | A | 
| * | SIMP_TYPE_DOM |  | where  is a type expression equal to  | A | 
| * | SIMP_TYPE_RAN |  | where  is a type expression equal to  | A | 
| * | SIMP_MULTI_DOM_CPROD |  | A | |
| * | SIMP_MULTI_RAN_CPROD |  | A | |
| * | SIMP_MULTI_DOM_DOMRES |  | A | |
| * | SIMP_MULTI_DOM_DOMSUB |  | A | |
| * | SIMP_MULTI_RAN_RANRES |  | A | |
| * | SIMP_MULTI_RAN_RANSUB |  | A | |
| * | DEF_IN_DOM |  | M | |
| * | DEF_IN_RAN |  | M | |
| * | DEF_IN_CONVERSE |  | M | |
| * | DEF_IN_DOMRES |  | M | |
| * | DEF_IN_RANRES |  | M | |
| * | DEF_IN_DOMSUB |  | M | |
| * | DEF_IN_RANSUB |  | M | |
| * | DEF_IN_RELIMAGE | ![F \in  r[w] \;\;\defi\;\;  \exists x \qdot  x \in  w \land  x \mapsto  F \in  r](/images/math/e/a/7/ea7840f0b824a8db50a6356a02b00904.png) | M | |
| * | DEF_IN_FCOMP |  | M | |
| * | DEF_OVERL |  | M | |
| * | DEF_IN_ID |  | M | |
| * | DEF_IN_DPROD |  | M | |
| * | DEF_IN_PPROD |  | M | |
| * | DEF_IN_REL |  | M | |
| * | DEF_IN_RELDOM |  | M | |
| * | DEF_IN_RELRAN |  | M | |
| * | DEF_IN_RELDOMRAN |  | M | |
| * | DEF_IN_FCT |  | M | |
| * | DEF_IN_TFCT |  | M | |
| * | DEF_IN_INJ |  | M | |
| * | DEF_IN_TINJ |  | M | |
| * | DEF_IN_SURJ |  | M | |
| * | DEF_IN_TSURJ |  | M | |
| * | DEF_IN_BIJ |  | M | |
| DISTRI_BCOMP_BUNION |  | M | ||
| * | DISTRI_FCOMP_BUNION_R |  | M | |
| * | DISTRI_FCOMP_BUNION_L |  | M | |
| DISTRI_DPROD_BUNION |  | M | ||
| DISTRI_DPROD_BINTER |  | M | ||
| DISTRI_DPROD_SETMINUS |  | M | ||
| DISTRI_DPROD_OVERL |  | M | ||
| DISTRI_PPROD_BUNION |  | M | ||
| DISTRI_PPROD_BINTER |  | M | ||
| DISTRI_PPROD_SETMINUS |  | M | ||
| DISTRI_PPROD_OVERL |  | M | ||
| DISTRI_OVERL_BUNION_L |  | M | ||
| DISTRI_OVERL_BINTER_L |  | M | ||
| * | DISTRI_DOMRES_BUNION_R |  | M | |
| * | DISTRI_DOMRES_BUNION_L |  | M | |
| * | DISTRI_DOMRES_BINTER_R |  | M | |
| * | DISTRI_DOMRES_BINTER_L |  | M | |
| DISTRI_DOMRES_SETMINUS_R |  | M | ||
| DISTRI_DOMRES_SETMINUS_L |  | M | ||
| DISTRI_DOMRES_DPROD |  | M | ||
| DISTRI_DOMRES_OVERL |  | M | ||
| * | DISTRI_DOMSUB_BUNION_R |  | M | |
| * | DISTRI_DOMSUB_BUNION_L |  | M | |
| * | DISTRI_DOMSUB_BINTER_R |  | M | |
| * | DISTRI_DOMSUB_BINTER_L |  | M | |
| DISTRI_DOMSUB_DPROD |  | M | ||
| DISTRI_DOMSUB_OVERL |  | M | ||
| * | DISTRI_RANRES_BUNION_R |  | M | |
| * | DISTRI_RANRES_BUNION_L |  | M | |
| * | DISTRI_RANRES_BINTER_R |  | M | |
| * | DISTRI_RANRES_BINTER_L |  | M | |
| DISTRI_RANRES_SETMINUS_R |  | M | ||
| DISTRI_RANRES_SETMINUS_L |  | M | ||
| * | DISTRI_RANSUB_BUNION_R |  | M | |
| * | DISTRI_RANSUB_BUNION_L |  | M | |
| * | DISTRI_RANSUB_BINTER_R |  | M | |
| * | DISTRI_RANSUB_BINTER_L |  | M | |
| * | DISTRI_CONVERSE_BUNION |  | M | |
| DISTRI_CONVERSE_BINTER |  | M | ||
| DISTRI_CONVERSE_SETMINUS |  | M | ||
| DISTRI_CONVERSE_BCOMP |  | M | ||
| DISTRI_CONVERSE_FCOMP |  | M | ||
| DISTRI_CONVERSE_PPROD |  | M | ||
| DISTRI_CONVERSE_DOMRES |  | M | ||
| DISTRI_CONVERSE_DOMSUB |  | M | ||
| DISTRI_CONVERSE_RANRES |  | M | ||
| DISTRI_CONVERSE_RANSUB |  | M | ||
| * | DISTRI_DOM_BUNION |  | M | |
| * | DISTRI_RAN_BUNION |  | M | |
| * | DISTRI_RELIMAGE_BUNION_R | ![r[S \bunion  T] \;\;\defi\;\;  r[S] \bunion  r[T]](/images/math/6/7/5/675105d6ac145c32895450ddb1a9515f.png) | M | |
| * | DISTRI_RELIMAGE_BUNION_L | ![(p \bunion  q)[S] \;\;\defi\;\;  p[S] \bunion  q[S]](/images/math/c/d/a/cdad0c6221ccb102d4f674695d7ff79c.png) | M | |
| * | DERIV_DOM_TOTALREL |  | with hypothesis  , where  is one of  | M | 
| DERIV_RAN_SURJREL |  | with hypothesis  , where  is one of  | M | |
| * | DERIV_PRJ1_SURJ |  | where  and  are types and  is one of  | A | 
| * | DERIV_PRJ2_SURJ |  | where  and  are types and  is one of  | A | 
| * | DERIV_ID_BIJ |  | where  is a type and  is any arrow | A | 
| * | SIMP_MAPSTO_PRJ1_PRJ2 |  | A | |
| DERIV_EXPAND_PRJS |  | M | ||
| * | SIMP_DOM_SUCC |  | A | |
| * | SIMP_RAN_SUCC |  | A | |
| * | DERIV_MULTI_IN_BUNION |  | A | |
| * | DERIV_MULTI_IN_SETMINUS |  | A | |
| * | DEF_PRED |  | A | |
| * | SIMP_SPECIAL_IN_ID |  | A | |
| * | SIMP_SPECIAL_IN_SETMINUS_ID |  | A | |
| * | SIMP_SPECIAL_IN_DOMRES_ID |  | A | |
| * | SIMP_SPECIAL_IN_SETMINUS_DOMRES_ID |  | A | 
