Arithmetic Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Benoit m Added stars to the automatic rules implemented in auto rewriter L2. |
Rules DEF_EXPN_STEP, SIMP_{MIN,MAX}_IN and SIMP_KBOOL_LIT_EQUAL_TRUE have been implemented in Rodin 3.9 |
||
(8 intermediate revisions by 3 users not shown) | |||
Line 14: | Line 14: | ||
{{RRRow}}|*||{{Rulename|SIMP_MIN_UPTO}}||<math> \min (E \upto F) \;\;\defi\;\; E </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MIN_UPTO}}||<math> \min (E \upto F) \;\;\defi\;\; E </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_MAX_UPTO}}||<math> \max (E \upto F) \;\;\defi\;\; F </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MAX_UPTO}}||<math> \max (E \upto F) \;\;\defi\;\; F </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_MIN_IN}}||<math> \min (S) \in S \;\;\defi\;\; \btrue </math>|| || A | |||
{{RRRow}}|*||{{Rulename|SIMP_MAX_IN}}||<math> \max (S) \in S \;\;\defi\;\; \btrue </math>|| || A | |||
{{RRRow}}|*||{{Rulename|SIMP_LIT_MIN}}||<math> \min (\{ E, \ldots , i, \ldots , j, \ldots , H\} ) \;\;\defi\;\; \min (\{ E, \ldots , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_MIN}}||<math> \min (\{ E, \ldots , i, \ldots , j, \ldots , H\} ) \;\;\defi\;\; \min (\{ E, \ldots , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> || A | ||
{{RRRow}}|*||{{Rulename|SIMP_LIT_MAX}}||<math> \max (\{ E, \ldots , i, \ldots , j, \ldots , H\} ) \;\;\defi\;\; \max (\{ E, \ldots , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \geq j</math> || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_MAX}}||<math> \max (\{ E, \ldots , i, \ldots , j, \ldots , H\} ) \;\;\defi\;\; \max (\{ E, \ldots , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \geq j</math> || A | ||
Line 19: | Line 21: | ||
{{RRRow}}|*||{{Rulename|SIMP_CARD_SING}}||<math> \card (\{ E\} ) \;\;\defi\;\; 1 </math>|| where <math>E</math> is a single expression || A | {{RRRow}}|*||{{Rulename|SIMP_CARD_SING}}||<math> \card (\{ E\} ) \;\;\defi\;\; 1 </math>|| where <math>E</math> is a single expression || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EQUAL_CARD}}||<math> \card (S) = 0 \;\;\defi\;\; S = \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EQUAL_CARD}}||<math> \card (S) = 0 \;\;\defi\;\; S = \emptyset </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_CARD_POW}}||<math> \card (\pow (S)) \;\;\defi\;\; 2 | {{RRRow}}|*||{{Rulename|SIMP_CARD_POW}}||<math> \card (\pow (S)) \;\;\defi\;\; 2\expn{\card(S)} </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_CARD_BUNION}}||<math> \card (S \bunion T) \;\;\defi\;\; \card (S) + \card (T) - \card (S \binter T) </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_CARD_BUNION}}||<math> \card (S \bunion T) \;\;\defi\;\; \card (S) + \card (T) - \card (S \binter T) </math>|| || A | ||
{{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS}}||<math>\card(S\setminus T)\;\;\defi\;\;\card(S) - \card(T)</math>|| with hypotheses <math>T\subseteq S</math> and either <math>\finite(S)</math> or <math>\finite(T)</math>|| A | |||
{{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS_SETENUM}}||<math>\card(S\setminus\{E_1,\ldots,E_n\})\;\;\defi\;\;\card(S) - \card(\{E_1,\ldots,E_n\})</math>|| with hypotheses <math>E_i\in S</math> for all <math>i\in 1\upto n</math>|| A | |||
{{RRRow}}|*||{{Rulename|SIMP_CARD_CONVERSE}}||<math> \card (r^{-1} ) \;\;\defi\;\; \card (r) </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_CARD_CONVERSE}}||<math> \card (r^{-1} ) \;\;\defi\;\; \card (r) </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_CARD_ID}}||<math> \card (\id) \;\;\defi\;\; \card (S) </math>|| where <math>\id</math> has type <math>\pow (S \cprod S) </math>|| A | {{RRRow}}|*||{{Rulename|SIMP_CARD_ID}}||<math> \card (\id) \;\;\defi\;\; \card (S) </math>|| where <math>\id</math> has type <math>\pow (S \cprod S) </math>|| A | ||
Line 48: | Line 52: | ||
{{RRRow}}|*||{{Rulename|DEF_IN_NATURAL}}||<math>x \in \nat \;\;\defi\;\; 0 \leq x </math>|| || M | {{RRRow}}|*||{{Rulename|DEF_IN_NATURAL}}||<math>x \in \nat \;\;\defi\;\; 0 \leq x </math>|| || M | ||
{{RRRow}}|*||{{Rulename|DEF_IN_NATURAL1}}||<math>x \in \natn \;\;\defi\;\; 1 \leq x </math>|| || M | {{RRRow}}|*||{{Rulename|DEF_IN_NATURAL1}}||<math>x \in \natn \;\;\defi\;\; 1 \leq x </math>|| || M | ||
{{RRRow}}|*||{{Rulename|SIMP_LIT_EQUAL_KBOOL_TRUE}}||<math> \bool (P) = \True \;\;\defi\;\; P </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_EQUAL_KBOOL_TRUE}}||<math> \bool (P) = \True \;\;\defi\;\; P </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_LIT_EQUAL_KBOOL_FALSE}}||<math> \bool (P) = \False \;\;\defi\;\; \lnot\, P </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_EQUAL_KBOOL_FALSE}}||<math> \bool (P) = \False \;\;\defi\;\; \lnot\, P </math>|| || A | ||
{{RRRow}}|||{{Rulename|DEF_EQUAL_MIN}}||<math> E = \min (S) \;\;\defi\;\; E \in S \land (\forall x \qdot x \in S \limp E \leq x) </math>|| where <math>x</math> non free in <math>S, E</math> || M | {{RRRow}}|*||{{Rulename|SIMP_KBOOL_LIT_EQUAL_TRUE}}||<math> \bool (B = \True) \;\;\defi\;\; B </math>|| || A | ||
{{RRRow}}|||{{Rulename|DEF_EQUAL_MAX}}||<math> E = \max (S) \;\;\defi\;\; E \in S \land (\forall x \qdot x \in S \limp E \geq x) </math>|| where <math>x</math> non free in <math>S, E</math> || M | {{RRRow}}|*||{{Rulename|DEF_EQUAL_MIN}}||<math> E = \min (S) \;\;\defi\;\; E \in S \land (\forall x \qdot x \in S \limp E \leq x) </math>|| where <math>x</math> non free in <math>S, E</math> || M | ||
{{RRRow}}|*||{{Rulename|DEF_EQUAL_MAX}}||<math> E = \max (S) \;\;\defi\;\; E \in S \land (\forall x \qdot x \in S \limp E \geq x) </math>|| where <math>x</math> non free in <math>S, E</math> || M | |||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_PLUS}}||<math> E + \ldots + 0 + \ldots + F \;\;\defi\;\; E + \ldots + F </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_PLUS}}||<math> E + \ldots + 0 + \ldots + F \;\;\defi\;\; E + \ldots + F </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_MINUS_R}}||<math> E - 0 \;\;\defi\;\; E </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_MINUS_R}}||<math> E - 0 \;\;\defi\;\; E </math>|| || A | ||
Line 85: | Line 88: | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EXPN_1_L}}||<math> 1 ^ E \;\;\defi\;\; 1 </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EXPN_1_L}}||<math> 1 ^ E \;\;\defi\;\; 1 </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EXPN_0}}||<math> E ^ 0 \;\;\defi\;\; 1 </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EXPN_0}}||<math> E ^ 0 \;\;\defi\;\; 1 </math>|| || A | ||
{{RRRow}}|*||{{Rulename|DEF_EXPN_STEP}}||<math> E ^ P \;\;\defi\;\; E * E ^{(P - 1)} </math>|| with an additional PO <math>\lnot\, P = 0</math> || M | |||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_LE}}||<math> E \leq E \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_LE}}||<math> E \leq E \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_LT}}||<math> E < E \;\;\defi\;\; \bfalse </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_LT}}||<math> E < E \;\;\defi\;\; \bfalse </math>|| || A |
Latest revision as of 15:11, 3 June 2024
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Rewrite_Rules.
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | SIMP_SPECIAL_MOD_0 |
![]() |
A | |
* | SIMP_SPECIAL_MOD_1 |
![]() |
A | |
* | SIMP_MIN_SING |
![]() |
where ![]() |
A |
* | SIMP_MAX_SING |
![]() |
where ![]() |
A |
* | SIMP_MIN_NATURAL |
![]() |
A | |
* | SIMP_MIN_NATURAL1 |
![]() |
A | |
* | SIMP_MIN_BUNION_SING |
![]() |
A | |
* | SIMP_MAX_BUNION_SING |
![]() |
A | |
* | SIMP_MIN_UPTO |
![]() |
A | |
* | SIMP_MAX_UPTO |
![]() |
A | |
* | SIMP_MIN_IN |
![]() |
A | |
* | SIMP_MAX_IN |
![]() |
A | |
* | SIMP_LIT_MIN |
![]() |
where ![]() ![]() ![]() |
A |
* | SIMP_LIT_MAX |
![]() |
where ![]() ![]() ![]() |
A |
* | SIMP_SPECIAL_CARD |
![]() |
A | |
* | SIMP_CARD_SING |
![]() |
where ![]() |
A |
* | SIMP_SPECIAL_EQUAL_CARD |
![]() |
A | |
* | SIMP_CARD_POW |
![]() |
A | |
* | SIMP_CARD_BUNION |
![]() |
A | |
SIMP_CARD_SETMINUS |
![]() |
with hypotheses ![]() ![]() ![]() |
A | |
SIMP_CARD_SETMINUS_SETENUM |
![]() |
with hypotheses ![]() ![]() |
A | |
* | SIMP_CARD_CONVERSE |
![]() |
A | |
* | SIMP_CARD_ID |
![]() |
where ![]() ![]() |
A |
* | SIMP_CARD_ID_DOMRES |
![]() |
A | |
* | SIMP_CARD_PRJ1 |
![]() |
where ![]() ![]() |
A |
* | SIMP_CARD_PRJ2 |
![]() |
where ![]() ![]() |
A |
* | SIMP_CARD_PRJ1_DOMRES |
![]() |
A | |
* | SIMP_CARD_PRJ2_DOMRES |
![]() |
A | |
* | SIMP_CARD_LAMBDA |
![]() |
where ![]() ![]() ![]() ![]() |
A |
* | SIMP_LIT_CARD_UPTO |
![]() |
where ![]() ![]() ![]() |
A |
SIMP_TYPE_CARD |
![]() |
where ![]() ![]() |
A | |
* | SIMP_LIT_GE_CARD_1 |
![]() |
A | |
* | SIMP_LIT_LE_CARD_1 |
![]() |
A | |
* | SIMP_LIT_LE_CARD_0 |
![]() |
A | |
* | SIMP_LIT_GE_CARD_0 |
![]() |
A | |
* | SIMP_LIT_GT_CARD_0 |
![]() |
A | |
* | SIMP_LIT_LT_CARD_0 |
![]() |
A | |
* | SIMP_LIT_EQUAL_CARD_1 |
![]() |
A | |
* | SIMP_CARD_NATURAL |
![]() |
A | |
* | SIMP_CARD_NATURAL1 |
![]() |
A | |
* | SIMP_LIT_IN_NATURAL |
![]() |
where ![]() |
A |
* | SIMP_SPECIAL_IN_NATURAL1 |
![]() |
A | |
* | SIMP_LIT_IN_NATURAL1 |
![]() |
where ![]() |
A |
* | SIMP_LIT_UPTO |
![]() |
where ![]() ![]() ![]() |
A |
* | SIMP_LIT_IN_MINUS_NATURAL |
![]() |
where ![]() |
A |
* | SIMP_LIT_IN_MINUS_NATURAL1 |
![]() |
where ![]() |
A |
* | DEF_IN_NATURAL |
![]() |
M | |
* | DEF_IN_NATURAL1 |
![]() |
M | |
* | SIMP_LIT_EQUAL_KBOOL_TRUE |
![]() |
A | |
* | SIMP_LIT_EQUAL_KBOOL_FALSE |
![]() |
A | |
* | SIMP_KBOOL_LIT_EQUAL_TRUE |
![]() |
A | |
* | DEF_EQUAL_MIN |
![]() |
where ![]() ![]() |
M |
* | DEF_EQUAL_MAX |
![]() |
where ![]() ![]() |
M |
* | SIMP_SPECIAL_PLUS |
![]() |
A | |
* | SIMP_SPECIAL_MINUS_R |
![]() |
A | |
* | SIMP_SPECIAL_MINUS_L |
![]() |
A | |
* | SIMP_MINUS_MINUS |
![]() |
A | |
* | SIMP_MINUS_UNMINUS |
![]() |
where ![]() |
M |
* | SIMP_MULTI_MINUS |
![]() |
A | |
* | SIMP_MULTI_MINUS_PLUS_L |
![]() |
M | |
* | SIMP_MULTI_MINUS_PLUS_R |
![]() |
M | |
* | SIMP_MULTI_MINUS_PLUS_PLUS |
![]() |
M | |
* | SIMP_MULTI_PLUS_MINUS |
![]() |
M | |
* | SIMP_MULTI_ARITHREL_PLUS_PLUS |
![]() |
where the root relation (![]() ![]() |
M |
* | SIMP_MULTI_ARITHREL_PLUS_R |
![]() |
where the root relation (![]() ![]() |
M |
* | SIMP_MULTI_ARITHREL_PLUS_L |
![]() |
where the root relation (![]() ![]() |
M |
* | SIMP_MULTI_ARITHREL_MINUS_MINUS_R |
![]() |
where the root relation (![]() ![]() |
M |
* | SIMP_MULTI_ARITHREL_MINUS_MINUS_L |
![]() |
where the root relation (![]() ![]() |
M |
* | SIMP_SPECIAL_PROD_0 |
![]() |
A | |
* | SIMP_SPECIAL_PROD_1 |
![]() |
A | |
* | SIMP_SPECIAL_PROD_MINUS_EVEN |
![]() |
if an even number of ![]() |
A |
* | SIMP_SPECIAL_PROD_MINUS_ODD |
![]() |
if an odd number of ![]() |
A |
* | SIMP_LIT_MINUS |
![]() |
where ![]() |
A |
* | SIMP_LIT_EQUAL |
![]() |
where ![]() ![]() |
A |
* | SIMP_LIT_LE |
![]() |
where ![]() ![]() |
A |
* | SIMP_LIT_LT |
![]() |
where ![]() ![]() |
A |
* | SIMP_LIT_GE |
![]() |
where ![]() ![]() |
A |
* | SIMP_LIT_GT |
![]() |
where ![]() ![]() |
A |
* | SIMP_DIV_MINUS |
![]() |
A | |
* | SIMP_SPECIAL_DIV_1 |
![]() |
A | |
* | SIMP_SPECIAL_DIV_0 |
![]() |
A | |
* | SIMP_SPECIAL_EXPN_1_R |
![]() |
A | |
* | SIMP_SPECIAL_EXPN_1_L |
![]() |
A | |
* | SIMP_SPECIAL_EXPN_0 |
![]() |
A | |
* | DEF_EXPN_STEP |
![]() |
with an additional PO ![]() |
M |
* | SIMP_MULTI_LE |
![]() |
A | |
* | SIMP_MULTI_LT |
![]() |
A | |
* | SIMP_MULTI_GE |
![]() |
A | |
* | SIMP_MULTI_GT |
![]() |
A | |
* | SIMP_MULTI_DIV |
![]() |
A | |
* | SIMP_MULTI_DIV_PROD |
![]() |
A | |
* | SIMP_MULTI_MOD |
![]() |
A | |
DISTRI_PROD_PLUS |
![]() |
M | ||
DISTRI_PROD_MINUS |
![]() |
M | ||
DERIV_NOT_EQUAL |
![]() |
![]() ![]() |
M |