Datatype Rules: Difference between revisions

From Event-B
Jump to navigationJump to search
imported>Nicolas
m corrected typos
imported>Nicolas
m applying DC to directions
Line 48: Line 48:
=== Application to directions ===
=== Application to directions ===


{{TODO}}


!x,y,dir . move(x,y,dir) /= x |-> y
Starting from goal
<math>\forall x,y,d \qdot \operatorname{move}(x \mapsto y \mapsto d) \neq x \mapsto y</math>
 
we can free variables x,y,d then apply Distinct Case:
   
  |
  | south
  | west
The resulting sequent is
<math>\frac{ d=\operatorname{north} \;\vdash \; \operatorname{move}(x \mapsto y \mapsto \operatorname{north}) \neq x \mapsto y  \qquad  d=east \;\vdash \; \operatorname{move}(x \mapsto y \mapsto \operatorname{east}) \neq x \mapsto y \qquad  d=south \;\vdash \; \operatorname{move}(x \mapsto y \mapsto \operatorname{south}) \neq x \mapsto y \qquad  d=west \;\vdash \; \operatorname{move}(x \mapsto y \mapsto \operatorname{west}) \neq x \mapsto y }{  \;\;\vdash\;\; \operatorname{move}(x \mapsto y \mapsto d) \neq x \mapsto y }</math>
 
further simplifications depend on the existence of rules about move and the various directions.


=== Application to lists ===
=== Application to lists ===
Line 64: Line 74:
{{TODO}}
{{TODO}}


!l,v,r. t = node(l,v,r) => height(l) < height(t)


== Induction ==
== Induction ==


{{TODO}}
{{TODO}}

Revision as of 16:46, 6 September 2010

Datatype rules may seem a bit difficult to understand at first sight. Here are a few examples intended to make them clearer.

Datatypes used

The rules will be applied to the following datatypes:

Directions:

direction ::=
    north
  | east
  | south
  | west

Let us have a function

\operatorname{move} \in \Z \cprod \Z \cprod \operatorname{direction} \tfun \Z \cprod \Z 

first two arguments are a start position, third is a direction, result is the end position.


Lists:

list(T) ::=
    nil
  | cons( head : T, tail : list(T) )

Let us have a predicate

\operatorname{member}(T, list(T))

meaning that the first argument is a member of the list.


Trees:

tree(T) ::=
  empty
| node( left : tree(T), value : T, right : tree(T) )


Let us have a function

\operatorname{height} \in \operatorname{Tree} \tfun \N defining the height of a tree

Distinct Case

The rule states

\frac{\textbf{H}, x=c_1(p_{11}, \ldots, p_{1k}) \;\;\vdash \;\; \textbf{G} \qquad \ldots \qquad \textbf{H}, x=c_n(p_{n1}, \ldots, p_{nl}) \;\;\vdash \;\; \textbf{G} }{ \textbf{H} \;\;\vdash\;\; \textbf{G} }


Application to directions

Starting from goal

\forall x,y,d \qdot \operatorname{move}(x \mapsto y \mapsto d) \neq x \mapsto y

we can free variables x,y,d then apply Distinct Case:

  | 
  | south
  | west

The resulting sequent is

\frac{ d=\operatorname{north} \;\vdash \; \operatorname{move}(x \mapsto y \mapsto \operatorname{north}) \neq x \mapsto y  \qquad  d=east \;\vdash \; \operatorname{move}(x \mapsto y \mapsto \operatorname{east}) \neq x \mapsto y \qquad  d=south \;\vdash \; \operatorname{move}(x \mapsto y \mapsto \operatorname{south}) \neq x \mapsto y \qquad  d=west \;\vdash \; \operatorname{move}(x \mapsto y \mapsto \operatorname{west}) \neq x \mapsto y }{  \;\;\vdash\;\; \operatorname{move}(x \mapsto y \mapsto d) \neq x \mapsto y }

further simplifications depend on the existence of rules about move and the various directions.

Application to lists

TODO

!l oftype list(\Z). #x. member(x,l) & (!y. member(y,l) => y <= x)

evidence that nil list has been forgotten in the predicate

Application to trees

TODO

!l,v,r. t = node(l,v,r) => height(l) < height(t)

Induction

TODO