Inference Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Nicolas m added ONE_POINT_L |
imported>Nicolas m Added comment for one point rule with 'exists' quantifier |
||
| Line 154: | Line 154: | ||
{{RRRow}}|*||{{Rulename|DISTINCT_CASE}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(\textbf{P}) \qquad \textbf{H}, {WD}(\textbf{P}), \textbf{P} \;\;\vdash \;\; \textbf{\textbf{G}} \qquad \textbf{H}, {WD}(\textbf{P}), \lnot \textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H} \;\;\vdash\;\; \textbf{G}}</math> || case distinction on predicate <math>\textbf{P}</math> || M | {{RRRow}}|*||{{Rulename|DISTINCT_CASE}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(\textbf{P}) \qquad \textbf{H}, {WD}(\textbf{P}), \textbf{P} \;\;\vdash \;\; \textbf{\textbf{G}} \qquad \textbf{H}, {WD}(\textbf{P}), \lnot \textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H} \;\;\vdash\;\; \textbf{G}}</math> || case distinction on predicate <math>\textbf{P}</math> || M | ||
{{RRRow}}| ||{{Rulename|ONE_POINT_L}}||<math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H}, \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} \;\;\vdash \;\; \textbf{G}}{ \textbf{H}, \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} \;\;\vdash\;\; \textbf{G}}</math>|| | {{RRRow}}| ||{{Rulename|ONE_POINT_L}}||<math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H}, \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} \;\;\vdash \;\; \textbf{G}}{ \textbf{H}, \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} \;\;\vdash\;\; \textbf{G}}</math>|| The rule can be applied with <math>\forall</math> as well as with <math>\exists</math> || A | ||
{{RRRow}}| ||{{Rulename|ONE_POINT_R}}||<math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} \;\;\vdash \;\; \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} }{ \textbf{H} \;\;\vdash\;\; \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} }</math>|| | {{RRRow}}| ||{{Rulename|ONE_POINT_R}}||<math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} \;\;\vdash \;\; \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} }{ \textbf{H} \;\;\vdash\;\; \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} }</math>|| The rule can be applied with <math>\forall</math> as well as with <math>\exists</math> || A | ||
|} | |} | ||
Revision as of 09:00, 15 July 2009
Conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Inference_Rules
| Name | Rule | Side Condition | A/M
| |
|---|---|---|---|---|
| * | HYP |
![]() |
A
| |
| * | HYP_OR |
![]() |
A
| |
| * | CNTR |
![]() |
A
| |
| * | FALSE_HYP |
![]() |
A
| |
| * | TRUE_GOAL |
![]() |
A
| |
| * | FUN_GOAL |
![]() |
where and denote types and is one of , , , , , , . |
A
|
| * | DBL_HYP |
![]() |
A
| |
| * | AND_L |
![]() |
A
| |
| * | AND_R |
![]() |
A
| |
| * | IMP_L1 |
![]() |
A
| |
| * | IMP_R |
![]() |
A
| |
| * | IMP_AND_L |
![]() |
A
| |
| * | IMP_OR_L |
![]() |
A
| |
| * | AUTO_MH |
![]() |
A
| |
| * | NEG_IN_L |
![]() |
A
| |
| * | NEG_IN_R |
![]() |
A
| |
| * | XST_L |
![]() |
A
| |
| * | ALL_R |
![]() |
A
| |
| * | EQL_LR |
![]() |
is a variable which is not free in ![]() |
A
|
| * | EQL_RL |
![]() |
is a variable which is not free in ![]() |
A
|
SUBSET_INTER |
![]() |
the operator must appear at the "top level" |
A
| |
IN_INTER |
![]() |
the operator must appear at the "top level" |
A
| |
NOTIN_INTER |
![]() |
the operator must appear at the "top level" |
A
| |
| * | CONTRADICT_L |
![]() |
M
| |
| * | CONTRADICT_R |
![]() |
M
| |
| * | CASE |
![]() |
M
| |
| * | MH |
![]() |
M
| |
| * | HM |
![]() |
M
| |
| * | EQV |
![]() |
M
| |
| * | OV_L |
![]() |
the operator must appear at the "top level" |
M
|
| * | OV_R |
![]() |
the operator must appear at the "top level" |
M
|
| * | OV_L |
![]() |
the operator must appear at the "top level" |
M
|
| * | OV_R |
![]() |
the operator must appear at the "top level" |
M
|
| * | DIS_BINTER_R |
![]() |
the occurrence of must appear at the "top level". Moreover and denote some type. Similar left distribution rules exist |
M
|
| * | DIS_SETMINUS_R |
![]() |
the occurrence of must appear at the "top level". Moreover and denote some type. Similar left distribution rules exist |
M
|
| * | SIM_REL_IMAGE_R |
![]() |
the occurrence of must appear at the "top level". A similar left simplification rule exists. |
M
|
| * | SIM_FCOMP_R |
![]() |
the occurrence of must appear at the "top level". A similar left simplification rule exists. |
M
|
| * | FIN_SUBSETEQ_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_BINTER_R |
![]() |
M
| |
| * | FIN_SETMINUS_R |
![]() |
M
| |
| * | FIN_REL_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_REL_IMG_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_REL_RAN_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_REL_DOM_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_FUN1_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_FUN2_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_FUN_IMG_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_FUN_RAN_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_FUN_DOM_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | LOWER_BOUND_L |
![]() |
must not contain any bound variable |
M
|
| * | LOWER_BOUND_R |
![]() |
must not contain any bound variable |
M
|
| * | UPPER_BOUND_L |
![]() |
must not contain any bound variable |
M
|
| * | UPPER_BOUND_R |
![]() |
must not contain any bound variable |
M
|
| * | FIN_LT_0 |
![]() |
M
| |
| * | FIN_GE_0 |
![]() |
M
| |
| * | CARD_INTERV |
![]() |
must appear at "top-level" |
M
|
| * | CARD_EMPTY_INTERV |
![]() |
must appear at "top-level" |
M
|
| * | CARD_SUBSETEQ |
![]() |
M
| |
| * | FORALL_INST |
![]() |
is instantiated with ![]() |
M
|
| * | FORALL_INST_MP |
![]() |
is instantiated with and a Modus Ponens is applied |
M
|
| * | CUT |
![]() |
hypothesis is added |
M
|
| * | EXISTS_INST |
![]() |
is instantiated with ![]() |
M
|
| * | DISTINCT_CASE |
![]() |
case distinction on predicate ![]() |
M
|
ONE_POINT_L |
![]() |
The rule can be applied with as well as with ![]() |
A
| |
ONE_POINT_R |
![]() |
The rule can be applied with as well as with ![]() |
A |






and
denote types and
is one of
,
,
,
,
,
,
.












is a variable which is not free in 


operator must appear at the "top level"








operator must appear at the "top level"


![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T]) \ \ \ \ \ }](/images/math/5/3/8/538882eb3fc5acd65e54da755e9513ae.png)
must appear at the "top level". Moreover
and
denote some type. Similar left distribution rules exist![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \setminus f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \setminus T]) \ \ \ \ \ }](/images/math/8/8/a/88a3101cc210b88d5fe59746292f12fe.png)
![\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \; \textbf{Q}(f[\{ E\} ])}](/images/math/7/d/f/7dfac56e8c4269e247b888bd790b211d.png)

must appear at the "top level". A similar left simplification rule exists.
in the editing area of the Proof Control Window


in the editing area of the Proof Control Window![\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(r[s]) \ \ \ \ \ \ \ }](/images/math/7/d/1/7d1b728949ca9ee920276cc4d7b89997.png)
in the editing area of the Proof Control Window



![\frac{\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(s) }{\textbf{H} \;\;\vdash \;\; \finite\,(f[s]) \ \ \ \ \ \ \ }](/images/math/c/1/3/c13b905d1407ea16b0e2c7c7e2d3309b.png)



must not contain any bound variable





must appear at "top-level"

![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \;\;\vdash\;\; \textbf{G}}](/images/math/a/c/b/acb596a712a0f720a7d3238f967ccfe6.png)
![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H}, {WD}(E) \;\;\vdash \;\; [x \bcmeq E]\textbf{P} \qquad \textbf{H}, {WD}(E), [x \bcmeq E]\textbf{Q} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \limp \textbf{Q} \;\;\vdash\;\; \textbf{G}}](/images/math/e/2/5/e25e646ecaceca4cb4143a3e66dbb185.png)

is added![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \exists x \qdot \textbf{P} \;\;\vdash\;\; \textbf{G}}](/images/math/a/3/a/a3af36c01f37d2d738cde14ec1be4e20.png)

![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H}, \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} \;\;\vdash \;\; \textbf{G}}{ \textbf{H}, \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} \;\;\vdash\;\; \textbf{G}}](/images/math/8/b/1/8b19ec24619d8d756596ebe54616be06.png)
as well as with 
![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} \;\;\vdash \;\; \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} }{ \textbf{H} \;\;\vdash\;\; \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} }](/images/math/3/7/9/379ac43eaae96f14177427e9cbc89387.png)