Inference Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Nicolas |
imported>Laurent Fixed broken rules (ill-defined, ill-typed or plain wrong) |
||
Line 1: | Line 1: | ||
Conventions used in these tables are described in [[The_Proving_Perspective_%28Rodin_User_Manual%29#Inference_Rules]] | Conventions used in these tables are described in [[The_Proving_Perspective_%28Rodin_User_Manual%29#Inference_Rules]]. | ||
Rules that are marked with a <tt>b</tt> in the first column are currently broken in Rodin 1.1 (see [http://sourceforge.net/tracker/?func=detail&aid=2895507&group_id=108850&atid=651669 bug 2895507]). | |||
{{RRHeader}} | {{RRHeader}} | ||
Line 78: | Line 80: | ||
{{RRRow}}|*||{{Rulename|CASE}}|| <math>\frac{\textbf{H}, \; \textbf{P} \; \; \vdash \; \; \textbf{R} \ \ \ \ \ldots \ \ \ \ \textbf{H}, \; \textbf{Q} \; \; \vdash \; \; \textbf{R} }{\textbf{H},\; \textbf{P} \lor \ldots \lor \textbf{Q} \; \; \vdash \; \; \textbf{R} }</math> || || M | {{RRRow}}|*||{{Rulename|CASE}}|| <math>\frac{\textbf{H}, \; \textbf{P} \; \; \vdash \; \; \textbf{R} \ \ \ \ \ldots \ \ \ \ \textbf{H}, \; \textbf{Q} \; \; \vdash \; \; \textbf{R} }{\textbf{H},\; \textbf{P} \lor \ldots \lor \textbf{Q} \; \; \vdash \; \; \textbf{R} }</math> || || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|MH}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;\textbf{P} \qquad \textbf{H},\; \textbf{Q} \;\;\vdash \;\; \textbf{R} }{\textbf{H},\;\textbf{P} \limp \textbf{Q} \;\;\vdash \;\; \textbf{R} \ \ \ \ \ }</math> || || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|HM}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;\neg\,\textbf{Q} \qquad \textbf{H},\; \neg\,\textbf{P} \;\;\vdash \;\; \textbf{R} }{\textbf{H},\;\textbf{P} \limp \textbf{Q} \;\;\vdash \;\; \textbf{R} \ \ \ \ \ }</math> || || M | ||
{{RRRow}}|*||{{Rulename|EQV}}|| <math>\frac{\textbf{H(Q)}, \textbf{P} \leqv \textbf{Q} | {{RRRow}}|*||{{Rulename|EQV}}|| <math>\frac{\textbf{H(Q)}, \textbf{P} \leqv \textbf{Q} | ||
Line 115: | Line 117: | ||
{{RRRow}}|*||{{Rulename|SIM_FCOMP_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(\textbf{Q}(g(f(x)))) \qquad\textbf{H},\; \textbf{Q}(g(f(x))) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}((f \fcomp g)(x)) \;\;\vdash \;\; \textbf{G} \ \ \ \ \ }</math> || the occurrence of <math>f \fcomp g</math> must appear at the "top level". || M | {{RRRow}}|*||{{Rulename|SIM_FCOMP_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(\textbf{Q}(g(f(x)))) \qquad\textbf{H},\; \textbf{Q}(g(f(x))) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}((f \fcomp g)(x)) \;\;\vdash \;\; \textbf{G} \ \ \ \ \ }</math> || the occurrence of <math>f \fcomp g</math> must appear at the "top level". || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|FIN_SUBSETEQ_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(T) \qquad\textbf{H} \;\;\vdash \;\; S \subseteq T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(T)}{\textbf{H} \;\;\vdash \;\; \finite\,(S) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}|*||{{Rulename|FIN_BINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash | {{RRRow}}|*||{{Rulename|FIN_BINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash | ||
Line 124: | Line 126: | ||
\;\;\finite\,(S)}{\textbf{H} \;\;\vdash \;\; \finite\,(S \;\setminus\; T) \ \ \ \ \ \ \ }</math> || || M | \;\;\finite\,(S)}{\textbf{H} \;\;\vdash \;\; \finite\,(S \;\setminus\; T) \ \ \ \ \ \ \ }</math> || || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|FIN_REL_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\rel T) \qquad\textbf{H} \;\;\vdash \;\; r \;\in\; S \rel T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) \qquad \textbf{H} \;\;\vdash \;\; \finite\,(T)}{\textbf{H} \;\;\vdash \;\; \finite\,(r)}</math> || the user has to write the set corresponding to <math>S \rel T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}|*||{{Rulename|FIN_REL_IMG_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(r[s]) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | {{RRRow}}|*||{{Rulename|FIN_REL_IMG_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(r[s]) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
Line 132: | Line 134: | ||
{{RRRow}}|*||{{Rulename|FIN_REL_DOM_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(\dom(r)) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | {{RRRow}}|*||{{Rulename|FIN_REL_DOM_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(\dom(r)) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|FIN_FUN1_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) }{\textbf{H} \;\;\vdash \;\; \finite\,(f) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|FIN_FUN2_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f^{-1} \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) }{\textbf{H} \;\;\vdash \;\; \finite\,(f) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|FIN_FUN_IMG_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(s) }{\textbf{H} \;\;\vdash \;\; \finite\,(f[s]) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|FIN_FUN_RAN_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) }{\textbf{H} \;\;\vdash \;\; \finite\,(\ran(f)) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|FIN_FUN_DOM_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f^{-1} \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) }{\textbf{H} \;\;\vdash \;\; \finite\,(\dom(f)) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}|*||{{Rulename|LOWER_BOUND_L}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite(S) }{\textbf{H} \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; n \leq x)}</math> || <math>S</math> must not contain any bound variable || M | {{RRRow}}|*||{{Rulename|LOWER_BOUND_L}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite(S) }{\textbf{H} \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; n \leq x)}</math> || <math>S</math> must not contain any bound variable || M | ||
Line 156: | Line 158: | ||
{{RRRow}}|*||{{Rulename|CARD_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b \;\;\vdash \;\; \textbf{Q}(b-a+1) \qquad \textbf{H},\, b < a \;\;\vdash \;\; \textbf{Q}(0) }{\textbf{H} \;\;\vdash\;\; \textbf{Q}(\card\,(a\upto b))}</math> || <math>\card (a \upto b)</math> must appear at "top-level" || M | {{RRRow}}|*||{{Rulename|CARD_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b \;\;\vdash \;\; \textbf{Q}(b-a+1) \qquad \textbf{H},\, b < a \;\;\vdash \;\; \textbf{Q}(0) }{\textbf{H} \;\;\vdash\;\; \textbf{Q}(\card\,(a\upto b))}</math> || <math>\card (a \upto b)</math> must appear at "top-level" || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|CARD_EMPTY_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b,\,\textbf{P}(b-a+1) \;\;\vdash \;\; \textbf{Q} \qquad \textbf{H},\, b < a ,\, \textbf{P}(0)\;\;\vdash \;\; \textbf{Q} }{\textbf{H},\,\textbf{P}(\card\,(a\upto b)) \;\;\vdash\;\; \textbf{Q}}</math> || <math>\card (a \upto b)</math> must appear at "top-level" || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|CARD_SUBSETEQ}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \textbf{P}(S \subseteq T) }{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card\,(S) \leq \card(T))}</math> || <math>S</math> and <math>T</math> bear the same type || M | ||
{{RRRow}}|*||{{Rulename|FORALL_INST}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> || M | {{RRRow}}|*||{{Rulename|FORALL_INST}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> || M |
Revision as of 11:07, 11 November 2009
Conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Inference_Rules.
Rules that are marked with a b in the first column are currently broken in Rodin 1.1 (see bug 2895507).
Name | Rule | Side Condition | A/M
| |
---|---|---|---|---|
* | HYP |
A
| ||
* | HYP_OR |
A
| ||
* | CNTR |
A
| ||
* | FALSE_HYP |
A
| ||
* | TRUE_GOAL |
A
| ||
* | FUN_GOAL |
where and denote types and is one of , , , , , , . | A
| |
* | DBL_HYP |
A
| ||
* | AND_L |
A
| ||
* | AND_R |
A
| ||
* | IMP_L1 |
A
| ||
* | IMP_R |
A
| ||
* | IMP_AND_L |
A
| ||
* | IMP_OR_L |
A
| ||
* | AUTO_MH |
A
| ||
* | NEG_IN_L |
A
| ||
* | NEG_IN_R |
A
| ||
* | XST_L |
A
| ||
* | ALL_R |
A
| ||
* | EQL_LR |
is a variable which is not free in | A
| |
* | EQL_RL |
is a variable which is not free in | A
| |
SUBSET_INTER |
the operator must appear at the "top level" | A
| ||
IN_INTER |
the operator must appear at the "top level" | A
| ||
NOTIN_INTER |
the operator must appear at the "top level" | A
| ||
* | FIN_L_LOWER_BOUND_L |
The goal is discharged | A
| |
* | FIN_L_LOWER_BOUND_R |
The goal is discharged | A
| |
* | FIN_L_UPPER_BOUND_L |
The goal is discharged | A
| |
* | FIN_L_UPPER_BOUND_R |
The goal is discharged | A
| |
* | CONTRADICT_L |
M
| ||
* | CONTRADICT_R |
M
| ||
* | CASE |
M
| ||
b | MH |
M
| ||
b | HM |
M
| ||
* | EQV |
M
| ||
* | OV_L |
the operator must appear at the "top level" | M
| |
* | OV_R |
the operator must appear at the "top level" | M
| |
* | OV_L |
the operator must appear at the "top level" | M
| |
* | OV_R |
the operator must appear at the "top level" | M
| |
* | DIS_BINTER_R |
the occurrence of must appear at the "top level". Moreover and denote some type. | M
| |
* | DIS_BINTER_L |
the occurrence of must appear at the "top level". Moreover and denote some type. | M
| |
* | DIS_SETMINUS_R |
the occurrence of must appear at the "top level". Moreover and denote some type. | M
| |
* | DIS_SETMINUS_L |
the occurrence of must appear at the "top level". Moreover and denote some type. | M
| |
* | SIM_REL_IMAGE_R |
the occurrence of must appear at the "top level". | M
| |
* | SIM_REL_IMAGE_L |
the occurrence of must appear at the "top level". | M
| |
* | SIM_FCOMP_R |
the occurrence of must appear at the "top level". | M
| |
* | SIM_FCOMP_L |
the occurrence of must appear at the "top level". | M
| |
b | FIN_SUBSETEQ_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_BINTER_R |
M
| ||
* | FIN_SETMINUS_R |
M
| ||
b | FIN_REL_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_REL_IMG_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_REL_RAN_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_REL_DOM_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
b | FIN_FUN1_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
b | FIN_FUN2_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
b | FIN_FUN_IMG_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
b | FIN_FUN_RAN_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
b | FIN_FUN_DOM_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | LOWER_BOUND_L |
must not contain any bound variable | M
| |
* | LOWER_BOUND_R |
must not contain any bound variable | M
| |
* | UPPER_BOUND_L |
must not contain any bound variable | M
| |
* | UPPER_BOUND_R |
must not contain any bound variable | M
| |
* | FIN_LT_0 |
M
| ||
* | FIN_GE_0 |
M
| ||
* | CARD_INTERV |
must appear at "top-level" | M
| |
b | CARD_EMPTY_INTERV |
must appear at "top-level" | M
| |
b | CARD_SUBSETEQ |
and bear the same type | M
| |
* | FORALL_INST |
is instantiated with | M
| |
* | FORALL_INST_MP |
is instantiated with and a Modus Ponens is applied | M
| |
* | CUT |
hypothesis is added | M
| |
* | EXISTS_INST |
is instantiated with | M
| |
* | DISTINCT_CASE |
case distinction on predicate | M
| |
ONE_POINT_L |
The rule can be applied with as well as with | A
| ||
ONE_POINT_R |
The rule can be applied with as well as with | A |