Relation Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Frederic No edit summary |
imported>Laurent Added star column |
||
Line 1: | Line 1: | ||
{{RRHeader}} | {{RRHeader}} | ||
{{RRRow}}|*||<font size="-2"> SIMP_DOM_COMPSET </font>||<math> \dom (\{ x \mapsto a, \ldots , y \mapsto b\} ) \;\;\defi\;\; \{ x, \ldots , y\} </math>|| || A | |||
{{RRRow}}|*||<font size="-2"> SIMP_DOM_CONVERSE </font>||<math> \dom (r^{-1} ) \;\; | |||
f \in S \pfun T & \defi & f \in S \rel T \\ & \land & (\forall x,y,z \qdot x \mapsto y \in f \land x \mapsto z \in f \limp y = z) \\ \end{array} </math>|| || M | f \in S \pfun T & \defi & f \in S \rel T \\ & \land & (\forall x,y,z \qdot x \mapsto y \in f \land x \mapsto z \in f \limp y = z) \\ \end{array} </math>|| || M | ||
{{RRRow}}|<font size="-2"> DEF_IN_TFCT </font>||<math> f \in S \tfun T \;\;\defi\;\; f \in S \pfun T \land \dom (f) = S </math>|| || M | {{RRRow}}|*||<font size="-2"> DEF_IN_TFCT </font>||<math> f \in S \tfun T \;\;\defi\;\; f \in S \pfun T \land \dom (f) = S </math>|| || M | ||
{{RRRow}}|<font size="-2"> DEF_IN_INJ </font>||<math> f \in S \pinj T \;\;\defi\;\; f \in S \pfun T \land f^{-1} \in T \pfun S </math>|| || M | {{RRRow}}|*||<font size="-2"> DEF_IN_INJ </font>||<math> f \in S \pinj T \;\;\defi\;\; f \in S \pfun T \land f^{-1} \in T \pfun S </math>|| || M | ||
{{RRRow}}|<font size="-2"> DEF_IN_TINJ </font>||<math> f \in S \tinj T \;\;\defi\;\; f \in S \pinj T \land \dom (f) = S </math>|| || M | {{RRRow}}|*||<font size="-2"> DEF_IN_TINJ </font>||<math> f \in S \tinj T \;\;\defi\;\; f \in S \pinj T \land \dom (f) = S </math>|| || M | ||
{{RRRow}}|<font size="-2"> DEF_IN_SURJ </font>||<math> f \in S \pfun T \;\;\defi\;\; f \in S \pfun T \land \ran (f) = T </math>|| || M | {{RRRow}}|*||<font size="-2"> DEF_IN_SURJ </font>||<math> f \in S \pfun T \;\;\defi\;\; f \in S \pfun T \land \ran (f) = T </math>|| || M | ||
{{RRRow}}|<font size="-2"> DEF_IN_TSURJ </font>||<math> f \in S \tsur T \;\;\defi\;\; f \in S \psur T \land \dom (f) = S </math>|| || M | {{RRRow}}|*||<font size="-2"> DEF_IN_TSURJ </font>||<math> f \in S \tsur T \;\;\defi\;\; f \in S \psur T \land \dom (f) = S </math>|| || M | ||
{{RRRow}}|<font size="-2"> DEF_IN_BIJ </font>||<math> f \in S \tbij T \;\;\defi\;\; f \in S \tinj T \land \ran (f) = T </math>|| || M | {{RRRow}}|*||<font size="-2"> DEF_IN_BIJ </font>||<math> f \in S \tbij T \;\;\defi\;\; f \in S \tinj T \land \ran (f) = T </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_BCOMP_BUNION </font>||<math> r \bcomp (s \bunion t) \;\;\defi\;\; (r \bcomp s) \bunion (r \bcomp s) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_BCOMP_BUNION </font>||<math> r \bcomp (s \bunion t) \;\;\defi\;\; (r \bcomp s) \bunion (r \bcomp s) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_FCOMP_BUNION_R </font>||<math> p \fcomp (q \bunion r) \;\;\defi\;\; (p \fcomp q) \bunion (p \fcomp r) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_FCOMP_BUNION_R </font>||<math> p \fcomp (q \bunion r) \;\;\defi\;\; (p \fcomp q) \bunion (p \fcomp r) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_FCOMP_BUNION_L </font>||<math> (q \bunion r) \fcomp p \;\;\defi\;\; (q \fcomp p) \bunion (r \fcomp p) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_FCOMP_BUNION_L </font>||<math> (q \bunion r) \fcomp p \;\;\defi\;\; (q \fcomp p) \bunion (r \fcomp p) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DPROD_BUNION </font>||<math> r \dprod (s \bunion t) \;\;\defi\;\; (r \dprod s) \bunion (r \dprod t) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DPROD_BUNION </font>||<math> r \dprod (s \bunion t) \;\;\defi\;\; (r \dprod s) \bunion (r \dprod t) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DPROD_BINTER </font>||<math> r \dprod (s \binter t) \;\;\defi\;\; (r \dprod s) \binter (r \dprod t) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DPROD_BINTER </font>||<math> r \dprod (s \binter t) \;\;\defi\;\; (r \dprod s) \binter (r \dprod t) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DPROD_SETMINUS </font>||<math> r \dprod (s \setminus t) \;\;\defi\;\; (r \dprod s) \setminus (r \dprod t) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DPROD_SETMINUS </font>||<math> r \dprod (s \setminus t) \;\;\defi\;\; (r \dprod s) \setminus (r \dprod t) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DPROD_OVERL </font>||<math> r \dprod (s \ovl t) \;\;\defi\;\; (r \dprod s) \ovl (r \dprod t) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DPROD_OVERL </font>||<math> r \dprod (s \ovl t) \;\;\defi\;\; (r \dprod s) \ovl (r \dprod t) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_PPROD_BUNION </font>||<math> r \pprod (s \bunion t) \;\;\defi\;\; (r \pprod s) \bunion (r \pprod t) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_PPROD_BUNION </font>||<math> r \pprod (s \bunion t) \;\;\defi\;\; (r \pprod s) \bunion (r \pprod t) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_PPROD_BINTER </font>||<math> r \pprod (s \binter t) \;\;\defi\;\; (r \pprod s) \binter (r \pprod t) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_PPROD_BINTER </font>||<math> r \pprod (s \binter t) \;\;\defi\;\; (r \pprod s) \binter (r \pprod t) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_PPROD_SETMINUS </font>||<math> r \pprod (s \setminus t) \;\;\defi\;\; (r \pprod s) \setminus (r \pprod t) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_PPROD_SETMINUS </font>||<math> r \pprod (s \setminus t) \;\;\defi\;\; (r \pprod s) \setminus (r \pprod t) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_PPROD_OVERL </font>||<math> r \pprod (s \ovl t) \;\;\defi\;\; (r \pprod s) \ovl (r \pprod t) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_PPROD_OVERL </font>||<math> r \pprod (s \ovl t) \;\;\defi\;\; (r \pprod s) \ovl (r \pprod t) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_OVERL_BUNION_L </font>||<math> (p \bunion q) \ovl r \;\;\defi\;\; (p \ovl r) \bunion (q \ovl r) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_OVERL_BUNION_L </font>||<math> (p \bunion q) \ovl r \;\;\defi\;\; (p \ovl r) \bunion (q \ovl r) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_OVERL_BINTER_L </font>||<math> (p \binter q) \ovl r \;\;\defi\;\; (p \ovl r) \binter (q \ovl r) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_OVERL_BINTER_L </font>||<math> (p \binter q) \ovl r \;\;\defi\;\; (p \ovl r) \binter (q \ovl r) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DOMRES_BUNION_R </font>||<math> s \domres (p \bunion q) \;\;\defi\;\; (s \domres p) \bunion (s \domres q) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DOMRES_BUNION_R </font>||<math> s \domres (p \bunion q) \;\;\defi\;\; (s \domres p) \bunion (s \domres q) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DOMRES_BUNION_L </font>||<math> (s \bunion t) \domres r \;\;\defi\;\; (s \domres r) \bunion (t \domres r) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DOMRES_BUNION_L </font>||<math> (s \bunion t) \domres r \;\;\defi\;\; (s \domres r) \bunion (t \domres r) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DOMRES_BINTER_R </font>||<math> s \domres (p \binter q) \;\;\defi\;\; (s \domres p) \binter (s \domres q) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DOMRES_BINTER_R </font>||<math> s \domres (p \binter q) \;\;\defi\;\; (s \domres p) \binter (s \domres q) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DOMRES_BINTER_L </font>||<math> (s \binter t) \domres r \;\;\defi\;\; (s \domres r) \binter (t \domres r) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DOMRES_BINTER_L </font>||<math> (s \binter t) \domres r \;\;\defi\;\; (s \domres r) \binter (t \domres r) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DOMRES_SETMINUS_R </font>||<math> s \domres (p \setminus q) \;\;\defi\;\; (s \domres p) \setminus (s \domres q) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DOMRES_SETMINUS_R </font>||<math> s \domres (p \setminus q) \;\;\defi\;\; (s \domres p) \setminus (s \domres q) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DOMRES_SETMINUS_L </font>||<math> (s \setminus t) \domres r \;\;\defi\;\; (s \domres r) \setminus (t \domres r) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DOMRES_SETMINUS_L </font>||<math> (s \setminus t) \domres r \;\;\defi\;\; (s \domres r) \setminus (t \domres r) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DOMRES_DPROD </font>||<math> s \domres (p \dprod q) \;\;\defi\;\; (s \domres p) \dprod (s \domres q) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DOMRES_DPROD </font>||<math> s \domres (p \dprod q) \;\;\defi\;\; (s \domres p) \dprod (s \domres q) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DOMRES_OVERL </font>||<math> s \domres (r \ovl q) \;\;\defi\;\; (s \domres r) \ovl (s \domres q) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DOMRES_OVERL </font>||<math> s \domres (r \ovl q) \;\;\defi\;\; (s \domres r) \ovl (s \domres q) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DOMSUB_BUNION_R </font>||<math> s \domsub (p \bunion q) \;\;\defi\;\; (s \domsub p) \bunion (s \domsub q) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DOMSUB_BUNION_R </font>||<math> s \domsub (p \bunion q) \;\;\defi\;\; (s \domsub p) \bunion (s \domsub q) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DOMSUB_BUNION_L </font>||<math> (s \bunion t) \domsub r \;\;\defi\;\; (s \domsub r) \bunion (t \domsub r) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DOMSUB_BUNION_L </font>||<math> (s \bunion t) \domsub r \;\;\defi\;\; (s \domsub r) \bunion (t \domsub r) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DOMSUB_BINTER_R </font>||<math> s \domsub (p \binter q) \;\;\defi\;\; (s \domsub p) \binter (s \domsub q) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DOMSUB_BINTER_R </font>||<math> s \domsub (p \binter q) \;\;\defi\;\; (s \domsub p) \binter (s \domsub q) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DOMSUB_BINTER_L </font>||<math> (s \binter t) \domsub r \;\;\defi\;\; (s \domsub r) \binter (t \domsub r) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DOMSUB_BINTER_L </font>||<math> (s \binter t) \domsub r \;\;\defi\;\; (s \domsub r) \binter (t \domsub r) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DOMSUB_DPROD </font>||<math> A \domsub (r \dprod s) \;\;\defi\;\; (A \domsub r) \dprod (A \domsub s) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DOMSUB_DPROD </font>||<math> A \domsub (r \dprod s) \;\;\defi\;\; (A \domsub r) \dprod (A \domsub s) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DOMSUB_OVERL </font>||<math> A \domsub (r \ovl s) \;\;\defi\;\; (A \domsub r) \ovl (A \domsub s) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DOMSUB_OVERL </font>||<math> A \domsub (r \ovl s) \;\;\defi\;\; (A \domsub r) \ovl (A \domsub s) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_RANRES_BUNION_R </font>||<math> (r \bunion s) \ranres t \;\;\defi\;\; (r \ranres t) \bunion (s \ranres t) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_RANRES_BUNION_R </font>||<math> (r \bunion s) \ranres t \;\;\defi\;\; (r \ranres t) \bunion (s \ranres t) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_RANRES_BUNION_L </font>||<math> (p \bunion q) \ranres s \;\;\defi\;\; (p \ranres s) \bunion (q \ranres s) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_RANRES_BUNION_L </font>||<math> (p \bunion q) \ranres s \;\;\defi\;\; (p \ranres s) \bunion (q \ranres s) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_RANRES_BINTER_R </font>||<math> (r \binter s) \ranres t \;\;\defi\;\; (r \ranres t) \binter (s \ranres t) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_RANRES_BINTER_R </font>||<math> (r \binter s) \ranres t \;\;\defi\;\; (r \ranres t) \binter (s \ranres t) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_RANRES_BINTER_L </font>||<math> (p \binter q) \ranres s \;\;\defi\;\; (p \ranres s) \binter (q \ranres s) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_RANRES_BINTER_L </font>||<math> (p \binter q) \ranres s \;\;\defi\;\; (p \ranres s) \binter (q \ranres s) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_RANRES_SETMINUS_R </font>||<math> (r \setminus s) \ranres t \;\;\defi\;\; (r \ranres t) \setminus (s \ranres t) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_RANRES_SETMINUS_R </font>||<math> (r \setminus s) \ranres t \;\;\defi\;\; (r \ranres t) \setminus (s \ranres t) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_RANRES_SETMINUS_L </font>||<math> (p \setminus q) \ranres s \;\;\defi\;\; (p \ranres s) \setminus (q \ranres s) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_RANRES_SETMINUS_L </font>||<math> (p \setminus q) \ranres s \;\;\defi\;\; (p \ranres s) \setminus (q \ranres s) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_RANSUB_BUNION_R </font>||<math> (r \bunion s) \ransub t \;\;\defi\;\; (r \ransub t) \bunion (s \ransub t) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_RANSUB_BUNION_R </font>||<math> (r \bunion s) \ransub t \;\;\defi\;\; (r \ransub t) \bunion (s \ransub t) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_RANSUB_BUNION_L </font>||<math> (p \bunion q) \ransub s \;\;\defi\;\; (p \ransub s) \bunion (q \ransub s) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_RANSUB_BUNION_L </font>||<math> (p \bunion q) \ransub s \;\;\defi\;\; (p \ransub s) \bunion (q \ransub s) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_RANSUB_BINTER_R </font>||<math> (r \binter s) \ransub t \;\;\defi\;\; (r \ransub t) \binter (s \ransub t) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_RANSUB_BINTER_R </font>||<math> (r \binter s) \ransub t \;\;\defi\;\; (r \ransub t) \binter (s \ransub t) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_RANSUB_BINTER_L </font>||<math> (p \binter q) \ransub s \;\;\defi\;\; (p \ransub s) \binter (q \ransub s) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_RANSUB_BINTER_L </font>||<math> (p \binter q) \ransub s \;\;\defi\;\; (p \ransub s) \binter (q \ransub s) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_CONVERSE_BUNION </font>||<math> (p \bunion q)^{-1} \;\;\defi\;\; p^{-1} \bunion q^{-1} </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_CONVERSE_BUNION </font>||<math> (p \bunion q)^{-1} \;\;\defi\;\; p^{-1} \bunion q^{-1} </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_CONVERSE_BINTER </font>||<math> (p \binter q)^{-1} \;\;\defi\;\; p^{-1} \binter q^{-1} </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_CONVERSE_BINTER </font>||<math> (p \binter q)^{-1} \;\;\defi\;\; p^{-1} \binter q^{-1} </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_CONVERSE_SETMINUS </font>||<math> (r \setminus s)^{-1} \;\;\defi\;\; r^{-1} \setminus s^{-1} </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_CONVERSE_SETMINUS </font>||<math> (r \setminus s)^{-1} \;\;\defi\;\; r^{-1} \setminus s^{-1} </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_CONVERSE_BCOMP </font>||<math> (r \bcomp s)^{-1} \;\;\defi\;\; (s^{-1} \bcomp r^{-1} ) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_CONVERSE_BCOMP </font>||<math> (r \bcomp s)^{-1} \;\;\defi\;\; (s^{-1} \bcomp r^{-1} ) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_CONVERSE_FCOMP </font>||<math> (p \fcomp q)^{-1} \;\;\defi\;\; (q^{-1} \fcomp p^{-1} ) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_CONVERSE_FCOMP </font>||<math> (p \fcomp q)^{-1} \;\;\defi\;\; (q^{-1} \fcomp p^{-1} ) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_CONVERSE_PPROD </font>||<math> (r \pprod s)^{-1} \;\;\defi\;\; r^{-1} \pprod s^{-1} </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_CONVERSE_PPROD </font>||<math> (r \pprod s)^{-1} \;\;\defi\;\; r^{-1} \pprod s^{-1} </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_CONVERSE_DOMRES </font>||<math> (s \domres r)^{-1} \;\;\defi\;\; r^{-1} \ranres s </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_CONVERSE_DOMRES </font>||<math> (s \domres r)^{-1} \;\;\defi\;\; r^{-1} \ranres s </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_CONVERSE_DOMSUB </font>||<math> (s \domsub r)^{-1} \;\;\defi\;\; r^{-1} \ransub s </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_CONVERSE_DOMSUB </font>||<math> (s \domsub r)^{-1} \;\;\defi\;\; r^{-1} \ransub s </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_CONVERSE_RANRES </font>||<math> (r \ranres s)^{-1} \;\;\defi\;\; s \domres r^{-1} </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_CONVERSE_RANRES </font>||<math> (r \ranres s)^{-1} \;\;\defi\;\; s \domres r^{-1} </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_CONVERSE_RANSUB </font>||<math> (r \ransub s)^{-1} \;\;\defi\;\; s \domsub r^{-1} </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_CONVERSE_RANSUB </font>||<math> (r \ransub s)^{-1} \;\;\defi\;\; s \domsub r^{-1} </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DOM_BUNION </font>||<math> \dom (r \bunion s) \;\;\defi\;\; \dom (r) \bunion \dom (s) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DOM_BUNION </font>||<math> \dom (r \bunion s) \;\;\defi\;\; \dom (r) \bunion \dom (s) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_RAN_BUNION </font>||<math> \ran (r \bunion s) \;\;\defi\;\; \ran (r) \bunion \ran (s) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_RAN_BUNION </font>||<math> \ran (r \bunion s) \;\;\defi\;\; \ran (r) \bunion \ran (s) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_RELIMAGE_BUNION_R </font>||<math> r[S \bunion T] \;\;\defi\;\; r[S] \bunion r[T] </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_RELIMAGE_BUNION_R </font>||<math> r[S \bunion T] \;\;\defi\;\; r[S] \bunion r[T] </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_RELIMAGE_BUNION_L </font>||<math> (p \bunion q)[S] \;\;\defi\;\; p[S] \bunion q[S] </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_RELIMAGE_BUNION_L </font>||<math> (p \bunion q)[S] \;\;\defi\;\; p[S] \bunion q[S] </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_DOM_BUNION </font>||<math> \dom (p \bunion q) \;\;\defi\;\; \dom (p) \bunion \dom (q) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_DOM_BUNION </font>||<math> \dom (p \bunion q) \;\;\defi\;\; \dom (p) \bunion \dom (q) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_RAN_BUNION </font>||<math> \ran (p \bunion q) \;\;\defi\;\; \ran (p) \bunion \ran (q) </math>|| || M | {{RRRow}}|*||<font size="-2"> DISTRI_RAN_BUNION </font>||<math> \ran (p \bunion q) \;\;\defi\;\; \ran (p) \bunion \ran (q) </math>|| || M | ||
|} | |} |
Revision as of 17:03, 11 February 2009
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | SIMP_DOM_COMPSET | A | ||
* | SIMP_DOM_CONVERSE | A | ||
* | SIMP_RAN_COMPSET | A | ||
* | SIMP_RAN_CONVERSE | A | ||
* | SIMP_SPECIAL_OVERL | A | ||
* | SIMP_MULTI_OVERL | A | ||
* | SIMP_TYPE_OVERL_CPROD | where is a type expression | A | |
SIMP_SPECIAL_DOMRES_L | A | |||
SIMP_SPECIAL_DOMRES_R | A | |||
* | SIMP_TYPE_DOMRES | where is a type expression | A | |
* | SIMP_MULTI_DOMRES_DOM | A | ||
* | SIMP_MULTI_DOMRES_RAN | A | ||
* | SIMP_DOMRES_ID | A | ||
SIMP_SPECIAL_RANRES_R | A | |||
SIMP_SPECIAL_RANRES_L | A | |||
* | SIMP_TYPE_RANRES | where is a type expression | A | |
* | SIMP_MULTI_RANRES_RAN | A | ||
* | SIMP_MULTI_RANRES_DOM | A | ||
* | SIMP_RANRES_ID | A | ||
SIMP_SPECIAL_DOMSUB_L | A | |||
SIMP_SPECIAL_DOMSUB_R | A | |||
* | SIMP_TYPE_DOMSUB | where is a type expression | A | |
* | SIMP_MULTI_DOMSUB_DOM | A | ||
* | SIMP_DOMSUB_ID | A | ||
SIMP_SPECIAL_RANSUB_R | A | |||
SIMP_SPECIAL_RANSUB_L | A | |||
* | SIMP_TYPE_RANSUB | where is a type expression | A | |
* | SIMP_MULTI_RANSUB_RAN | A | ||
* | SIMP_RANSUB_ID | A | ||
SIMP_SPECIAL_FCOMP | A | |||
* | SIMP_TYPE_FCOMP_ID | where is a type expression | A | |
* | SIMP_TYPE_FCOMP_R | where is a type expression equal to | A | |
* | SIMP_TYPE_FCOMP_L | where is a type expression equal to | A | |
* | SIMP_FCOMP_ID | A | ||
SIMP_SPECIAL_BCOMP | A | |||
* | SIMP_TYPE_BCOMP_ID | where is a type expression | A | |
* | SIMP_TYPE_BCOMP_L | where is a type expression equal to | A | |
* | SIMP_TYPE_BCOMP_R | where is a type expression equal to | A | |
* | SIMP_BCOMP_ID | A | ||
SIMP_SPECIAL_DPROD_R | A | |||
SIMP_SPECIAL_DPROD_L | A | |||
* | SIMP_TYPE_DPROD | where \mathit{Ta} and \mathit{Tb} are type expressions and and | A | |
SIMP_SPECIAL_PPROD_R | A | |||
SIMP_SPECIAL_PPROD_L | A | |||
* | SIMP_TYPE_PPROD | where \mathit{Ta} and \mathit{Tb} are type expressions and and | A | |
* | SIMP_SPECIAL_RELIMAGE_R | A | ||
SIMP_SPECIAL_RELIMAGE_L | A | |||
* | SIMP_TYPE_RELIMAGE | where is a type expression | A | |
* | SIMP_MULTI_RELIMAGE_DOM | A | ||
* | SIMP_TYPE_RELIMAGE_ID | where is a type expression | A | |
* | SIMP_RELIMAGE_ID | A | ||
* | SIMP_MULTI_RELIMAGE_CPROD_SING | where is a single expression | A | |
* | SIMP_MULTI_RELIMAGE_SING_MAPSTO | where is a single expression | A | |
* | SIMP_MULTI_RELIMAGE_CONVERSE_RANSUB | A | ||
* | SIMP_MULTI_RELIMAGE_CONVERSE_RANRES | A | ||
* | SIMP_RELIMAGE_CONVERSE_DOMSUB | A | ||
* | DERIV_RELIMAGE_RANSUB | M | ||
* | DERIV_RELIMAGE_RANRES | M | ||
* | SIMP_MULTI_RELIMAGE_DOMSUB | A | ||
* | DERIV_RELIMAGE_DOMSUB | M | ||
* | DERIV_RELIMAGE_DOMRES | M | ||
SIMP_SPECIAL_CONVERSE | A | |||
* | SIMP_CONVERSE_ID | A | ||
* | SIMP_TYPE_CONVERSE | where is a type expression equal to | A | |
* | SIMP_CONVERSE_SETENUM | A | ||
* | SIMP_CONVERSE_COMPSET | A | ||
SIMP_SPECIAL_ID | A | |||
* | SIMP_DOM_ID | A | ||
* | SIMP_RAN_ID | A | ||
* | SIMP_FCOMP_ID_L | A | ||
* | SIMP_FCOMP_ID_R | A | ||
SIMP_SPECIAL_REL_R | idem for operators | A | ||
SIMP_SPECIAL_REL_L | idem for operators | A | ||
SIMP_SPECIAL_EQUAL_REL | idem for operators | A | ||
SIMP_SPECIAL_EQUAL_RELDOM | idem for operators | A | ||
SIMP_SPECIAL_PRJ1 | A | |||
SIMP_SPECIAL_PRJ2 | A | |||
* | SIMP_FUNIMAGE_PRJ1 | A | ||
* | SIMP_FUNIMAGE_PRJ2 | A | ||
* | SIMP_DOM_PRJ1 | A | ||
* | SIMP_DOM_PRJ2 | A | ||
* | SIMP_RAN_PRJ1 | A | ||
* | SIMP_RAN_PRJ2 | A | ||
SIMP_SPECIAL_LAMBDA | A | |||
* | SIMP_FUNIMAGE_LAMBDA | A | ||
* | SIMP_DOM_LAMBDA | A | ||
* | SIMP_RAN_LAMBDA | A | ||
* | SIMP_MULTI_FUNIMAGE_SETENUM_LL | A | ||
* | SIMP_MULTI_FUNIMAGE_SETENUM_LR | A | ||
* | SIMP_MULTI_FUNIMAGE_OVERL_SETENUM | A | ||
* | SIMP_MULTI_FUNIMAGE_BUNION_SETENUM | A | ||
* | SIMP_FUNIMAGE_CPROD | A | ||
* | SIMP_FUNIMAGE_ID | A | ||
* | SIMP_FUNIMAGE_FUNIMAGE_CONVERSE | A | ||
* | SIMP_FUNIMAGE_CONVERSE_FUNIMAGE | A | ||
* | DEF_BCOMP | M | ||
* | DERIV_ID_SING | where is a single expression | M | |
* | SIMP_SPECIAL_DOM | A | ||
* | SIMP_SPECIAL_RAN | A | ||
* | SIMP_CONVERSE_CONVERSE | A | ||
* | DERIV_RELIMAGE_FCOMP | M | ||
* | DERIV_FCOMP_DOMRES | M | ||
* | DERIV_FCOMP_DOMSUB | M | ||
* | DERIV_FCOMP_RANRES | M | ||
* | DERIV_FCOMP_RANSUB | M | ||
* | SIMP_SPECIAL_EQUAL_RELDOMRAN | idem for operators | A | |
* | SIMP_TYPE_DOM | where is a type expression equal to | A | |
* | SIMP_TYPE_RAN | where is a type expression equal to | A | |
* | SIMP_MULTI_DOM_CPROD | A | ||
* | SIMP_MULTI_RAN_CPROD | A | ||
* | DEF_IN_DOM | M | ||
* | DEF_IN_RAN | M | ||
* | DEF_IN_CONVERSE | M | ||
* | DEF_IN_DOMRES | M | ||
* | DEF_IN_RANRES | M | ||
* | DEF_IN_DOMSUB | M | ||
* | DEF_IN_RANSUB | M | ||
* | DEF_IN_RELIMAGE | M | ||
* | DEF_IN_FCOMP | M | ||
* | DEF_OVERL | M | ||
* | DEF_IN_ID | M | ||
* | DEF_IN_DPROD | M | ||
* | DEF_IN_PPROD | M | ||
* | DEF_IN_RELDOM | M | ||
* | DEF_IN_RELRAN | M | ||
* | DEF_IN_RELDOMRAN | M | ||
* | DEF_IN_FCT | M | ||
* | DEF_IN_TFCT | M | ||
* | DEF_IN_INJ | M | ||
* | DEF_IN_TINJ | M | ||
* | DEF_IN_SURJ | M | ||
* | DEF_IN_TSURJ | M | ||
* | DEF_IN_BIJ | M | ||
* | DISTRI_BCOMP_BUNION | M | ||
* | DISTRI_FCOMP_BUNION_R | M | ||
* | DISTRI_FCOMP_BUNION_L | M | ||
* | DISTRI_DPROD_BUNION | M | ||
* | DISTRI_DPROD_BINTER | M | ||
* | DISTRI_DPROD_SETMINUS | M | ||
* | DISTRI_DPROD_OVERL | M | ||
* | DISTRI_PPROD_BUNION | M | ||
* | DISTRI_PPROD_BINTER | M | ||
* | DISTRI_PPROD_SETMINUS | M | ||
* | DISTRI_PPROD_OVERL | M | ||
* | DISTRI_OVERL_BUNION_L | M | ||
* | DISTRI_OVERL_BINTER_L | M | ||
* | DISTRI_DOMRES_BUNION_R | M | ||
* | DISTRI_DOMRES_BUNION_L | M | ||
* | DISTRI_DOMRES_BINTER_R | M | ||
* | DISTRI_DOMRES_BINTER_L | M | ||
* | DISTRI_DOMRES_SETMINUS_R | M | ||
* | DISTRI_DOMRES_SETMINUS_L | M | ||
* | DISTRI_DOMRES_DPROD | M | ||
* | DISTRI_DOMRES_OVERL | M | ||
* | DISTRI_DOMSUB_BUNION_R | M | ||
* | DISTRI_DOMSUB_BUNION_L | M | ||
* | DISTRI_DOMSUB_BINTER_R | M | ||
* | DISTRI_DOMSUB_BINTER_L | M | ||
* | DISTRI_DOMSUB_DPROD | M | ||
* | DISTRI_DOMSUB_OVERL | M | ||
* | DISTRI_RANRES_BUNION_R | M | ||
* | DISTRI_RANRES_BUNION_L | M | ||
* | DISTRI_RANRES_BINTER_R | M | ||
* | DISTRI_RANRES_BINTER_L | M | ||
* | DISTRI_RANRES_SETMINUS_R | M | ||
* | DISTRI_RANRES_SETMINUS_L | M | ||
* | DISTRI_RANSUB_BUNION_R | M | ||
* | DISTRI_RANSUB_BUNION_L | M | ||
* | DISTRI_RANSUB_BINTER_R | M | ||
* | DISTRI_RANSUB_BINTER_L | M | ||
* | DISTRI_CONVERSE_BUNION | M | ||
* | DISTRI_CONVERSE_BINTER | M | ||
* | DISTRI_CONVERSE_SETMINUS | M | ||
* | DISTRI_CONVERSE_BCOMP | M | ||
* | DISTRI_CONVERSE_FCOMP | M | ||
* | DISTRI_CONVERSE_PPROD | M | ||
* | DISTRI_CONVERSE_DOMRES | M | ||
* | DISTRI_CONVERSE_DOMSUB | M | ||
* | DISTRI_CONVERSE_RANRES | M | ||
* | DISTRI_CONVERSE_RANSUB | M | ||
* | DISTRI_DOM_BUNION | M | ||
* | DISTRI_RAN_BUNION | M | ||
* | DISTRI_RELIMAGE_BUNION_R | M | ||
* | DISTRI_RELIMAGE_BUNION_L | M | ||
* | DISTRI_DOM_BUNION | M | ||
* | DISTRI_RAN_BUNION | M |