Relation Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Laurent Put back rule SIMP_FUNIMAGE_CONVERSE_FUNIMAGE |
imported>Laurent m Fixed rule names to make them easy to extract |
||
| Line 1: | Line 1: | ||
{{RRHeader}} | {{RRHeader}} | ||
{{RRRow}}|*||{{Rulename|SIMP_DOM_COMPSET}}||<math> \dom (\{ x \mapsto a, \ldots , y \mapsto b\} ) \;\;\defi\;\; \{ x, \ldots , y\} </math>|| || A | |||
{{RRRow}}|*||{{Rulename|SIMP_DOM_CONVERSE}}||<math> \dom (r^{-1} ) \;\;\defi\;\; \ran (r) </math | |||
f \in S \pfun T & \defi & f \in S \rel T \\ & \land & (\forall x,y,z \qdot x \mapsto y \in f \land x \mapsto z \in f \limp y = z) \\ \end{array} </math>|| || M | f \in S \pfun T & \defi & f \in S \rel T \\ & \land & (\forall x,y,z \qdot x \mapsto y \in f \land x \mapsto z \in f \limp y = z) \\ \end{array} </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DEF_IN_TFCT}}||<math> f \in S \tfun T \;\;\defi\;\; f \in S \pfun T \land \dom (f) = S </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DEF_IN_INJ}}||<math> f \in S \pinj T \;\;\defi\;\; f \in S \pfun T \land f^{-1} \in T \pfun S </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DEF_IN_TINJ}}||<math> f \in S \tinj T \;\;\defi\;\; f \in S \pinj T \land \dom (f) = S </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DEF_IN_SURJ}}||<math> f \in S \pfun T \;\;\defi\;\; f \in S \pfun T \land \ran (f) = T </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DEF_IN_TSURJ}}||<math> f \in S \tsur T \;\;\defi\;\; f \in S \psur T \land \dom (f) = S </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DEF_IN_BIJ}}||<math> f \in S \tbij T \;\;\defi\;\; f \in S \tinj T \land \ran (f) = T </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_BCOMP_BUNION}}||<math> r \bcomp (s \bunion t) \;\;\defi\;\; (r \bcomp s) \bunion (r \bcomp s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_FCOMP_BUNION_R}}||<math> p \fcomp (q \bunion r) \;\;\defi\;\; (p \fcomp q) \bunion (p \fcomp r) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_FCOMP_BUNION_L}}||<math> (q \bunion r) \fcomp p \;\;\defi\;\; (q \fcomp p) \bunion (r \fcomp p) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DPROD_BUNION}}||<math> r \dprod (s \bunion t) \;\;\defi\;\; (r \dprod s) \bunion (r \dprod t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DPROD_BINTER}}||<math> r \dprod (s \binter t) \;\;\defi\;\; (r \dprod s) \binter (r \dprod t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DPROD_SETMINUS}}||<math> r \dprod (s \setminus t) \;\;\defi\;\; (r \dprod s) \setminus (r \dprod t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DPROD_OVERL}}||<math> r \dprod (s \ovl t) \;\;\defi\;\; (r \dprod s) \ovl (r \dprod t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_PPROD_BUNION}}||<math> r \pprod (s \bunion t) \;\;\defi\;\; (r \pprod s) \bunion (r \pprod t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_PPROD_BINTER}}||<math> r \pprod (s \binter t) \;\;\defi\;\; (r \pprod s) \binter (r \pprod t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_PPROD_SETMINUS}}||<math> r \pprod (s \setminus t) \;\;\defi\;\; (r \pprod s) \setminus (r \pprod t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_PPROD_OVERL}}||<math> r \pprod (s \ovl t) \;\;\defi\;\; (r \pprod s) \ovl (r \pprod t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_OVERL_BUNION_L}}||<math> (p \bunion q) \ovl r \;\;\defi\;\; (p \ovl r) \bunion (q \ovl r) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_OVERL_BINTER_L}}||<math> (p \binter q) \ovl r \;\;\defi\;\; (p \ovl r) \binter (q \ovl r) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_BUNION_R}}||<math> s \domres (p \bunion q) \;\;\defi\;\; (s \domres p) \bunion (s \domres q) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_BUNION_L}}||<math> (s \bunion t) \domres r \;\;\defi\;\; (s \domres r) \bunion (t \domres r) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_BINTER_R}}||<math> s \domres (p \binter q) \;\;\defi\;\; (s \domres p) \binter (s \domres q) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_BINTER_L}}||<math> (s \binter t) \domres r \;\;\defi\;\; (s \domres r) \binter (t \domres r) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_SETMINUS_R}}||<math> s \domres (p \setminus q) \;\;\defi\;\; (s \domres p) \setminus (s \domres q) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_SETMINUS_L}}||<math> (s \setminus t) \domres r \;\;\defi\;\; (s \domres r) \setminus (t \domres r) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_DPROD}}||<math> s \domres (p \dprod q) \;\;\defi\;\; (s \domres p) \dprod (s \domres q) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_OVERL}}||<math> s \domres (r \ovl q) \;\;\defi\;\; (s \domres r) \ovl (s \domres q) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMSUB_BUNION_R}}||<math> s \domsub (p \bunion q) \;\;\defi\;\; (s \domsub p) \bunion (s \domsub q) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMSUB_BUNION_L}}||<math> (s \bunion t) \domsub r \;\;\defi\;\; (s \domsub r) \bunion (t \domsub r) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMSUB_BINTER_R}}||<math> s \domsub (p \binter q) \;\;\defi\;\; (s \domsub p) \binter (s \domsub q) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMSUB_BINTER_L}}||<math> (s \binter t) \domsub r \;\;\defi\;\; (s \domsub r) \binter (t \domsub r) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMSUB_DPROD}}||<math> A \domsub (r \dprod s) \;\;\defi\;\; (A \domsub r) \dprod (A \domsub s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMSUB_OVERL}}||<math> A \domsub (r \ovl s) \;\;\defi\;\; (A \domsub r) \ovl (A \domsub s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANRES_BUNION_R}}||<math> r \ranres (s \bunion t) \;\;\defi\;\; (r \ranres s) \bunion (r \ranres t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANRES_BUNION_L}}||<math> (p \bunion q) \ranres s \;\;\defi\;\; (p \ranres s) \bunion (q \ranres s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANRES_BINTER_R}}||<math> r \ranres (s \binter t) \;\;\defi\;\; (r \ranres s) \binter (r \ranres t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANRES_BINTER_L}}||<math> (p \binter q) \ranres s \;\;\defi\;\; (p \ranres s) \binter (q \ranres s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANRES_SETMINUS_R}}||<math> r \ranres (s \setminus t) \;\;\defi\;\; (r \ranres s) \setminus (r \ranres t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANRES_SETMINUS_L}}||<math> (p \setminus q) \ranres s \;\;\defi\;\; (p \ranres s) \setminus (q \ranres s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANSUB_BUNION_R}}||<math> (r \bunion s) \ransub t \;\;\defi\;\; (r \ransub t) \bunion (s \ransub t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANSUB_BUNION_L}}||<math> (p \bunion q) \ransub s \;\;\defi\;\; (p \ransub s) \bunion (q \ransub s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANSUB_BINTER_R}}||<math> (r \binter s) \ransub t \;\;\defi\;\; (r \ransub t) \binter (s \ransub t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANSUB_BINTER_L}}||<math> (p \binter q) \ransub s \;\;\defi\;\; (p \ransub s) \binter (q \ransub s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_BUNION}}||<math> (p \bunion q)^{-1} \;\;\defi\;\; p^{-1} \bunion q^{-1} </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_BINTER}}||<math> (p \binter q)^{-1} \;\;\defi\;\; p^{-1} \binter q^{-1} </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_SETMINUS}}||<math> (r \setminus s)^{-1} \;\;\defi\;\; r^{-1} \setminus s^{-1} </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_BCOMP}}||<math> (r \bcomp s)^{-1} \;\;\defi\;\; (s^{-1} \bcomp r^{-1} ) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_FCOMP}}||<math> (p \fcomp q)^{-1} \;\;\defi\;\; (q^{-1} \fcomp p^{-1} ) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_PPROD}}||<math> (r \pprod s)^{-1} \;\;\defi\;\; r^{-1} \pprod s^{-1} </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_DOMRES}}||<math> (s \domres r)^{-1} \;\;\defi\;\; r^{-1} \ranres s </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_DOMSUB}}||<math> (s \domsub r)^{-1} \;\;\defi\;\; r^{-1} \ransub s </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_RANRES}}||<math> (r \ranres s)^{-1} \;\;\defi\;\; s \domres r^{-1} </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_RANSUB}}||<math> (r \ransub s)^{-1} \;\;\defi\;\; s \domsub r^{-1} </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOM_BUNION}}||<math> \dom (r \bunion s) \;\;\defi\;\; \dom (r) \bunion \dom (s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RAN_BUNION}}||<math> \ran (r \bunion s) \;\;\defi\;\; \ran (r) \bunion \ran (s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RELIMAGE_BUNION_R}}||<math> r[S \bunion T] \;\;\defi\;\; r[S] \bunion r[T] </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RELIMAGE_BUNION_L}}||<math> (p \bunion q)[S] \;\;\defi\;\; p[S] \bunion q[S] </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOM_BUNION}}||<math> \dom (p \bunion q) \;\;\defi\;\; \dom (p) \bunion \dom (q) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RAN_BUNION}}||<math> \ran (p \bunion q) \;\;\defi\;\; \ran (p) \bunion \ran (q) </math>|| || M | ||
|} | |} | ||
Revision as of 10:31, 8 July 2009
| Name | Rule | Side Condition | A/M | |
|---|---|---|---|---|
| * | SIMP_DOM_COMPSET |
![]() |
A | |
| * | SIMP_DOM_CONVERSE |
![]() |
A | |
| * | SIMP_RAN_COMPSET |
![]() |
A | |
| * | SIMP_RAN_CONVERSE |
![]() |
A | |
| * | SIMP_SPECIAL_OVERL |
![]() |
A | |
| * | SIMP_MULTI_OVERL |
![]() |
A | |
| * | SIMP_TYPE_OVERL_CPROD |
![]() |
where is a type expression |
A |
SIMP_SPECIAL_DOMRES_L |
![]() |
A | ||
SIMP_SPECIAL_DOMRES_R |
![]() |
A | ||
| * | SIMP_TYPE_DOMRES |
![]() |
where is a type expression |
A |
| * | SIMP_MULTI_DOMRES_DOM |
![]() |
A | |
| * | SIMP_MULTI_DOMRES_RAN |
![]() |
A | |
| * | SIMP_DOMRES_ID |
![]() |
A | |
SIMP_SPECIAL_RANRES_R |
![]() |
A | ||
SIMP_SPECIAL_RANRES_L |
![]() |
A | ||
| * | SIMP_TYPE_RANRES |
![]() |
where is a type expression |
A |
| * | SIMP_MULTI_RANRES_RAN |
![]() |
A | |
| * | SIMP_MULTI_RANRES_DOM |
![]() |
A | |
| * | SIMP_RANRES_ID |
![]() |
A | |
SIMP_SPECIAL_DOMSUB_L |
![]() |
A | ||
SIMP_SPECIAL_DOMSUB_R |
![]() |
A | ||
| * | SIMP_TYPE_DOMSUB |
![]() |
where is a type expression |
A |
| * | SIMP_MULTI_DOMSUB_DOM |
![]() |
A | |
| * | SIMP_DOMSUB_ID |
![]() |
A | |
SIMP_SPECIAL_RANSUB_R |
![]() |
A | ||
SIMP_SPECIAL_RANSUB_L |
![]() |
A | ||
| * | SIMP_TYPE_RANSUB |
![]() |
where is a type expression |
A |
| * | SIMP_MULTI_RANSUB_RAN |
![]() |
A | |
| * | SIMP_RANSUB_ID |
![]() |
A | |
SIMP_SPECIAL_FCOMP |
![]() |
A | ||
| * | SIMP_TYPE_FCOMP_ID |
![]() |
where is a type expression |
A |
| * | SIMP_TYPE_FCOMP_R |
![]() |
where is a type expression equal to ![]() |
A |
| * | SIMP_TYPE_FCOMP_L |
![]() |
where is a type expression equal to ![]() |
A |
| * | SIMP_FCOMP_ID |
![]() |
A | |
SIMP_SPECIAL_BCOMP |
![]() |
A | ||
| * | SIMP_TYPE_BCOMP_ID |
![]() |
where is a type expression |
A |
| * | SIMP_TYPE_BCOMP_L |
![]() |
where is a type expression equal to ![]() |
A |
| * | SIMP_TYPE_BCOMP_R |
![]() |
where is a type expression equal to ![]() |
A |
| * | SIMP_BCOMP_ID |
![]() |
A | |
SIMP_SPECIAL_DPROD_R |
![]() |
A | ||
SIMP_SPECIAL_DPROD_L |
![]() |
A | ||
| * | SIMP_TYPE_DPROD |
![]() |
where and are type expressions and and ![]() |
A |
SIMP_SPECIAL_PPROD_R |
![]() |
A | ||
SIMP_SPECIAL_PPROD_L |
![]() |
A | ||
| * | SIMP_TYPE_PPROD |
![]() |
where and are type expressions and and ![]() |
A |
| * | SIMP_SPECIAL_RELIMAGE_R |
![]() |
A | |
SIMP_SPECIAL_RELIMAGE_L |
![]() |
A | ||
| * | SIMP_TYPE_RELIMAGE |
![]() |
where is a type expression |
A |
| * | SIMP_MULTI_RELIMAGE_DOM |
![]() |
A | |
| * | SIMP_TYPE_RELIMAGE_ID |
![]() |
where is a type expression |
A |
| * | SIMP_RELIMAGE_ID |
![]() |
A | |
| * | SIMP_MULTI_RELIMAGE_CPROD_SING |
![]() |
where is a single expression |
A |
| * | SIMP_MULTI_RELIMAGE_SING_MAPSTO |
![]() |
where is a single expression |
A |
| * | SIMP_MULTI_RELIMAGE_CONVERSE_RANSUB |
![]() |
A | |
| * | SIMP_MULTI_RELIMAGE_CONVERSE_RANRES |
![]() |
A | |
| * | SIMP_RELIMAGE_CONVERSE_DOMSUB |
![]() |
A | |
| * | DERIV_RELIMAGE_RANSUB |
![]() |
M | |
| * | DERIV_RELIMAGE_RANRES |
![]() |
M | |
| * | SIMP_MULTI_RELIMAGE_DOMSUB |
![]() |
A | |
| * | DERIV_RELIMAGE_DOMSUB |
![]() |
M | |
| * | DERIV_RELIMAGE_DOMRES |
![]() |
M | |
SIMP_SPECIAL_CONVERSE |
![]() |
A | ||
| * | SIMP_CONVERSE_ID |
![]() |
A | |
| * | SIMP_TYPE_CONVERSE |
![]() |
where is a type expression equal to ![]() |
A |
| * | SIMP_CONVERSE_SETENUM |
![]() |
A | |
| * | SIMP_CONVERSE_COMPSET |
![]() |
A | |
SIMP_SPECIAL_ID |
![]() |
A | ||
| * | SIMP_DOM_ID |
![]() |
A | |
| * | SIMP_RAN_ID |
![]() |
A | |
| * | SIMP_FCOMP_ID_L |
![]() |
A | |
| * | SIMP_FCOMP_ID_R |
![]() |
A | |
SIMP_SPECIAL_REL_R |
![]() |
idem for operators ![]() |
A | |
SIMP_SPECIAL_REL_L |
![]() |
idem for operators ![]() |
A | |
SIMP_SPECIAL_EQUAL_REL |
![]() |
idem for operators ![]() |
A | |
SIMP_SPECIAL_EQUAL_RELDOM |
![]() |
idem for operators ![]() |
A | |
SIMP_SPECIAL_PRJ1 |
![]() |
A | ||
SIMP_SPECIAL_PRJ2 |
![]() |
A | ||
| * | SIMP_FUNIMAGE_PRJ1 |
![]() |
A | |
| * | SIMP_FUNIMAGE_PRJ2 |
![]() |
A | |
| * | SIMP_DOM_PRJ1 |
![]() |
A | |
| * | SIMP_DOM_PRJ2 |
![]() |
A | |
| * | SIMP_RAN_PRJ1 |
![]() |
A | |
| * | SIMP_RAN_PRJ2 |
![]() |
A | |
SIMP_SPECIAL_LAMBDA |
![]() |
A | ||
| * | SIMP_FUNIMAGE_LAMBDA |
![]() |
A | |
| * | SIMP_DOM_LAMBDA |
![]() |
A | |
| * | SIMP_RAN_LAMBDA |
![]() |
A | |
| * | SIMP_MULTI_FUNIMAGE_SETENUM_LL |
![]() |
A | |
| * | SIMP_MULTI_FUNIMAGE_SETENUM_LR |
![]() |
A | |
| * | SIMP_MULTI_FUNIMAGE_OVERL_SETENUM |
![]() |
A | |
| * | SIMP_MULTI_FUNIMAGE_BUNION_SETENUM |
![]() |
A | |
| * | SIMP_FUNIMAGE_CPROD |
![]() |
A | |
| * | SIMP_FUNIMAGE_ID |
![]() |
A | |
| * | SIMP_FUNIMAGE_FUNIMAGE_CONVERSE |
![]() |
A | |
| * | SIMP_FUNIMAGE_CONVERSE_FUNIMAGE |
![]() |
A | |
| * | SIMP_FUNIMAGE_FUNIMAGE_CONVERSE_SETENUM |
![]() |
A | |
| * | DEF_BCOMP |
![]() |
M | |
| * | DERIV_ID_SING |
![]() |
where is a single expression |
M |
| * | SIMP_SPECIAL_DOM |
![]() |
A | |
| * | SIMP_SPECIAL_RAN |
![]() |
A | |
| * | SIMP_CONVERSE_CONVERSE |
![]() |
A | |
| * | DERIV_RELIMAGE_FCOMP |
![]() |
M | |
| * | DERIV_FCOMP_DOMRES |
![]() |
M | |
| * | DERIV_FCOMP_DOMSUB |
![]() |
M | |
| * | DERIV_FCOMP_RANRES |
![]() |
M | |
| * | DERIV_FCOMP_RANSUB |
![]() |
M | |
SIMP_SPECIAL_EQUAL_RELDOMRAN |
![]() |
idem for operators ![]() |
A | |
| * | SIMP_TYPE_DOM |
![]() |
where is a type expression equal to ![]() |
A |
| * | SIMP_TYPE_RAN |
![]() |
where is a type expression equal to ![]() |
A |
| * | SIMP_MULTI_DOM_CPROD |
![]() |
A | |
| * | SIMP_MULTI_RAN_CPROD |
![]() |
A | |
| * | DEF_IN_DOM |
![]() |
M | |
| * | DEF_IN_RAN |
![]() |
M | |
| * | DEF_IN_CONVERSE |
![]() |
M | |
| * | DEF_IN_DOMRES |
![]() |
M | |
| * | DEF_IN_RANRES |
![]() |
M | |
| * | DEF_IN_DOMSUB |
![]() |
M | |
| * | DEF_IN_RANSUB |
![]() |
M | |
| * | DEF_IN_RELIMAGE |
![]() |
M | |
| * | DEF_IN_FCOMP |
![]() |
M | |
| * | DEF_OVERL |
![]() |
M | |
| * | DEF_IN_ID |
![]() |
M | |
| * | DEF_IN_DPROD |
![]() |
M | |
| * | DEF_IN_PPROD |
![]() |
M | |
| * | DEF_IN_RELDOM |
![]() |
M | |
| * | DEF_IN_RELRAN |
![]() |
M | |
| * | DEF_IN_RELDOMRAN |
![]() |
M | |
| * | DEF_IN_FCT |
![]() |
M | |
| * | DEF_IN_TFCT |
![]() |
M | |
| * | DEF_IN_INJ |
![]() |
M | |
| * | DEF_IN_TINJ |
![]() |
M | |
| * | DEF_IN_SURJ |
![]() |
M | |
| * | DEF_IN_TSURJ |
![]() |
M | |
| * | DEF_IN_BIJ |
![]() |
M | |
| * | DISTRI_BCOMP_BUNION |
![]() |
M | |
| * | DISTRI_FCOMP_BUNION_R |
![]() |
M | |
| * | DISTRI_FCOMP_BUNION_L |
![]() |
M | |
| * | DISTRI_DPROD_BUNION |
![]() |
M | |
| * | DISTRI_DPROD_BINTER |
![]() |
M | |
| * | DISTRI_DPROD_SETMINUS |
![]() |
M | |
| * | DISTRI_DPROD_OVERL |
![]() |
M | |
| * | DISTRI_PPROD_BUNION |
![]() |
M | |
| * | DISTRI_PPROD_BINTER |
![]() |
M | |
| * | DISTRI_PPROD_SETMINUS |
![]() |
M | |
| * | DISTRI_PPROD_OVERL |
![]() |
M | |
| * | DISTRI_OVERL_BUNION_L |
![]() |
M | |
| * | DISTRI_OVERL_BINTER_L |
![]() |
M | |
| * | DISTRI_DOMRES_BUNION_R |
![]() |
M | |
| * | DISTRI_DOMRES_BUNION_L |
![]() |
M | |
| * | DISTRI_DOMRES_BINTER_R |
![]() |
M | |
| * | DISTRI_DOMRES_BINTER_L |
![]() |
M | |
| * | DISTRI_DOMRES_SETMINUS_R |
![]() |
M | |
| * | DISTRI_DOMRES_SETMINUS_L |
![]() |
M | |
| * | DISTRI_DOMRES_DPROD |
![]() |
M | |
| * | DISTRI_DOMRES_OVERL |
![]() |
M | |
| * | DISTRI_DOMSUB_BUNION_R |
![]() |
M | |
| * | DISTRI_DOMSUB_BUNION_L |
![]() |
M | |
| * | DISTRI_DOMSUB_BINTER_R |
![]() |
M | |
| * | DISTRI_DOMSUB_BINTER_L |
![]() |
M | |
| * | DISTRI_DOMSUB_DPROD |
![]() |
M | |
| * | DISTRI_DOMSUB_OVERL |
![]() |
M | |
| * | DISTRI_RANRES_BUNION_R |
![]() |
M | |
| * | DISTRI_RANRES_BUNION_L |
![]() |
M | |
| * | DISTRI_RANRES_BINTER_R |
![]() |
M | |
| * | DISTRI_RANRES_BINTER_L |
![]() |
M | |
| * | DISTRI_RANRES_SETMINUS_R |
![]() |
M | |
| * | DISTRI_RANRES_SETMINUS_L |
![]() |
M | |
| * | DISTRI_RANSUB_BUNION_R |
![]() |
M | |
| * | DISTRI_RANSUB_BUNION_L |
![]() |
M | |
| * | DISTRI_RANSUB_BINTER_R |
![]() |
M | |
| * | DISTRI_RANSUB_BINTER_L |
![]() |
M | |
| * | DISTRI_CONVERSE_BUNION |
![]() |
M | |
| * | DISTRI_CONVERSE_BINTER |
![]() |
M | |
| * | DISTRI_CONVERSE_SETMINUS |
![]() |
M | |
| * | DISTRI_CONVERSE_BCOMP |
![]() |
M | |
| * | DISTRI_CONVERSE_FCOMP |
![]() |
M | |
| * | DISTRI_CONVERSE_PPROD |
![]() |
M | |
| * | DISTRI_CONVERSE_DOMRES |
![]() |
M | |
| * | DISTRI_CONVERSE_DOMSUB |
![]() |
M | |
| * | DISTRI_CONVERSE_RANRES |
![]() |
M | |
| * | DISTRI_CONVERSE_RANSUB |
![]() |
M | |
| * | DISTRI_DOM_BUNION |
![]() |
M | |
| * | DISTRI_RAN_BUNION |
![]() |
M | |
| * | DISTRI_RELIMAGE_BUNION_R |
![]() |
M | |
| * | DISTRI_RELIMAGE_BUNION_L |
![]() |
M | |
| * | DISTRI_DOM_BUNION |
![]() |
M | |
| * | DISTRI_RAN_BUNION |
![]() |
M |







is a type expression



































and
are type expressions and
and 




![r[\emptyset ] \;\;\defi\;\; \emptyset](/images/math/b/9/a/b9aaf14a5527d53ff1febab3e8883f03.png)
![\emptyset [S] \;\;\defi\;\; \emptyset](/images/math/6/4/8/648fbd380df0ae4c5d64da8bef51ee2d.png)
![r[Ty] \;\;\defi\;\; \ran (r)](/images/math/0/2/1/02153b3e9f952be7157a4d4e336374a7.png)
![r[\dom (r)] \;\;\defi\;\; \ran (r)](/images/math/0/3/4/0346b1b9c1146a8343fa2d18e1732769.png)
![\id (\mathit{Ty})[T] \;\;\defi\;\; T](/images/math/7/2/8/728d20e0dc8ffafa0814d996833d7418.png)
![\id (S)[T] \;\;\defi\;\; S \binter T](/images/math/7/8/9/789c033967506f18ca67b954cba3fe2c.png)
![(\{ E\} \cprod S)[\{ E\} ] \;\;\defi\;\; S](/images/math/c/5/2/c526fc7db223ce0bfe920622d54d64e0.png)
is a single expression![\{ E \mapsto F\} [\{ E\} ] \;\;\defi\;\; \{ F\}](/images/math/e/2/c/e2c3111e1660139c0d07f75c30de0e5c.png)
![(r \ransub S)^{-1} [S] \;\;\defi\;\; \emptyset](/images/math/0/d/8/0d87a3a40feb382450061c80f9ed103e.png)
![(r \ranres S)^{-1} [S] \;\;\defi\;\; r^{-1} [S]](/images/math/1/7/4/174952bb78d6d7afd42ee6a53ed2ac78.png)
![(S \domsub r)^{-1} [T] \;\;\defi\;\; r^{-1} [T] \setminus S](/images/math/3/4/2/342512ec589776fd0aae93fe8eb732e6.png)
![(r \ransub S)[T] \;\;\defi\;\; r[T] \setminus S](/images/math/5/9/3/5933212d9aad4f59b7641ea383b31a91.png)
![(r \ranres S)[T] \;\;\defi\;\; r[T] \binter S](/images/math/1/9/9/1994ec5d3fa539db498124fe8fd4a27d.png)
![(S \domsub r)[S] \;\;\defi\;\; \emptyset](/images/math/b/f/3/bf31fb9e2da1545464bd5baecc397c01.png)
![(S \domsub r)[T] \;\;\defi\;\; r[T \setminus S]](/images/math/f/2/4/f2407e5c136829c08c1bc390d74a77fe.png)
![(S \domres r)[T] \;\;\defi\;\; r[S \binter T]](/images/math/8/4/0/840633e87abc3f54638ede200920f377.png)












































![(p \fcomp q)[s] \;\;\defi\;\; q[p[s]]](/images/math/d/5/2/d525cb240947f85af66b077f0894364c.png)


















![F \in r[w] \;\;\defi\;\; \exists x \qdot x \in w \land x \mapsto F \in r](/images/math/e/a/7/ea7840f0b824a8db50a6356a02b00904.png)
































































![r[S \bunion T] \;\;\defi\;\; r[S] \bunion r[T]](/images/math/6/7/5/675105d6ac145c32895450ddb1a9515f.png)
![(p \bunion q)[S] \;\;\defi\;\; p[S] \bunion q[S]](/images/math/c/d/a/cdad0c6221ccb102d4f674695d7ff79c.png)

