Arithmetic Rewrite Rules: Difference between revisions
From Event-B
				
				
				Jump to navigationJump to search
				
				
imported>Frederic  New page: {{RRHeader}} {{RRRow}}|<font size="-2"> SIMP_SPECIAL_MOD_0 </font>||<math>  0 \,\bmod\,  E \;\;\defi\;\;  0 </math>||  ||  A {{RRRow}}|<font size="-2"> SIMP_SPECIAL_MOD_1 </font>||<math>  ...  | 
				imported>Laurent  Added star column  | 
				||
| Line 1: | Line 1: | ||
{{RRHeader}}  | {{RRHeader}}  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_MOD_0 </font>||<math>  0 \,\bmod\,  E \;\;\defi\;\;  0 </math>||  ||  A  | {{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_MOD_0 </font>||<math>  0 \,\bmod\,  E \;\;\defi\;\;  0 </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_MOD_1 </font>||<math>  E \mod  1 \;\;\defi\;\;  0 </math>||  ||  A  | {{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_MOD_1 </font>||<math>  E \mod  1 \;\;\defi\;\;  0 </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_MIN_SING </font>||<math>  \min (\{ E\} ) \;\;\defi\;\;  E </math>|| where <math>E</math> is a single expression ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_MIN_SING </font>||<math>  \min (\{ E\} ) \;\;\defi\;\;  E </math>|| where <math>E</math> is a single expression ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_MAX_SING </font>||<math>  \max (\{ E\} ) \;\;\defi\;\;  E </math>|| where <math>E</math> is a single expression ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_MAX_SING </font>||<math>  \max (\{ E\} ) \;\;\defi\;\;  E </math>|| where <math>E</math> is a single expression ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_MIN_NATURAL </font>||<math>  \min (\nat ) \;\;\defi\;\;  0 </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_MIN_NATURAL </font>||<math>  \min (\nat ) \;\;\defi\;\;  0 </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_MIN_NATURAL1 </font>||<math>  \min (\natn ) \;\;\defi\;\;  1 </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_MIN_NATURAL1 </font>||<math>  \min (\natn ) \;\;\defi\;\;  1 </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_MIN_BUNION_SING </font>||<math>  \begin{array}{cl} & \min (S \bunion  \ldots  \bunion  \{ \min (T)\}  \bunion  \ldots  \bunion  U) \\ \defi & \min (S \bunion  \ldots  \bunion  T \bunion  \ldots  \bunion  U) \\ \end{array} </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_MIN_BUNION_SING </font>||<math>  \begin{array}{cl} & \min (S \bunion  \ldots  \bunion  \{ \min (T)\}  \bunion  \ldots  \bunion  U) \\ \defi & \min (S \bunion  \ldots  \bunion  T \bunion  \ldots  \bunion  U) \\ \end{array} </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_MAX_BUNION_SING </font>||<math>  \begin{array}{cl} & \max (S \bunion  \ldots  \bunion  \{ \max (T)\}  \bunion  \ldots  \bunion  U) \\ \defi &  \max (S \bunion  \ldots  \bunion  T \bunion  \ldots  \bunion  U) \\  \end{array} </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_MAX_BUNION_SING </font>||<math>  \begin{array}{cl} & \max (S \bunion  \ldots  \bunion  \{ \max (T)\}  \bunion  \ldots  \bunion  U) \\ \defi &  \max (S \bunion  \ldots  \bunion  T \bunion  \ldots  \bunion  U) \\  \end{array} </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_MIN_UPTO </font>||<math>  \min (E \upto  F) \;\;\defi\;\;  E </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_MIN_UPTO </font>||<math>  \min (E \upto  F) \;\;\defi\;\;  E </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_MAX_UPTO </font>||<math>  \max (E \upto  F) \;\;\defi\;\;  F </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_MAX_UPTO </font>||<math>  \max (E \upto  F) \;\;\defi\;\;  F </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_MIN </font>||<math>  \min (\{ E, \ldots  , i, \ldots  , j, \ldots , H\} ) \;\;\defi\;\;  \min (\{ E, \ldots  , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_MIN </font>||<math>  \min (\{ E, \ldots  , i, \ldots  , j, \ldots , H\} ) \;\;\defi\;\;  \min (\{ E, \ldots  , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_MAX </font>||<math>  \max (\{ E, \ldots  , i, \ldots  , j, \ldots , H\} ) \;\;\defi\;\;  \max (\{ E, \ldots  , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \geq j</math> ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_MAX </font>||<math>  \max (\{ E, \ldots  , i, \ldots  , j, \ldots , H\} ) \;\;\defi\;\;  \max (\{ E, \ldots  , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \geq j</math> ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_MIN_UPTO </font>||<math>  \min (\{ i, \ldots  , j\} ) \;\;\defi\;\;  A \;\;(computation) </math>|| where <math>i, ... ,\,j</math> are literals ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_MIN_UPTO </font>||<math>  \min (\{ i, \ldots  , j\} ) \;\;\defi\;\;  A \;\;(computation) </math>|| where <math>i, ... ,\,j</math> are literals ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_MAX_UPTO </font>||<math>  \max (\{ i, \ldots  , j\} ) \;\;\defi\;\;  A \;\;(computation) </math>|| where <math>i, ... ,\,j</math> are literals ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_MAX_UPTO </font>||<math>  \max (\{ i, \ldots  , j\} ) \;\;\defi\;\;  A \;\;(computation) </math>|| where <math>i, ... ,\,j</math> are literals ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_CARD </font>||<math>  \card (\emptyset ) \;\;\defi\;\;  0 </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_CARD </font>||<math>  \card (\emptyset ) \;\;\defi\;\;  0 </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_CARD_SING </font>||<math>  \card (\{ E\} ) \;\;\defi\;\;  1 </math>|| where <math>E</math> is a single expression ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_CARD_SING </font>||<math>  \card (\{ E\} ) \;\;\defi\;\;  1 </math>|| where <math>E</math> is a single expression ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_EQUAL_CARD </font>||<math>  \card (S) = 0 \;\;\defi\;\;  S = \emptyset </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_EQUAL_CARD </font>||<math>  \card (S) = 0 \;\;\defi\;\;  S = \emptyset </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_CARD_POW </font>||<math>  \card (\pow (S)) \;\;\defi\;\;  2 ^ \card (S) </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_CARD_POW </font>||<math>  \card (\pow (S)) \;\;\defi\;\;  2 ^ \card (S) </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_CARD_BUNION </font>||<math>  \card (S \bunion  T) \;\;\defi\;\;  \card (S) + \card (T) - \card (S \binter  T) </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_CARD_BUNION </font>||<math>  \card (S \bunion  T) \;\;\defi\;\;  \card (S) + \card (T) - \card (S \binter  T) </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_CARD_CONVERSE </font>||<math>  \card (r^{-1} ) \;\;\defi\;\;  \card (r) </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_CARD_CONVERSE </font>||<math>  \card (r^{-1} ) \;\;\defi\;\;  \card (r) </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_CARD_ID </font>||<math>  \card (\id (S)) \;\;\defi\;\;  \card (S) </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_CARD_ID </font>||<math>  \card (\id (S)) \;\;\defi\;\;  \card (S) </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_CARD_LAMBDA </font>||<math>  \card (\lambda x\qdot (P \mid  E)) \;\;\defi\;\;  \card (\{ x \qdot  P \mid  x\} ) </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_CARD_LAMBDA </font>||<math>  \card (\lambda x\qdot (P \mid  E)) \;\;\defi\;\;  \card (\{ x \qdot  P \mid  x\} ) </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_CARD_COMPSET </font>||<math>  \card (\{ x \qdot  x \in  S \mid  x\} ) \;\;\defi\;\;  \card (S) </math>|| where <math>x</math> non free in <math>S</math> ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_CARD_COMPSET </font>||<math>  \card (\{ x \qdot  x \in  S \mid  x\} ) \;\;\defi\;\;  \card (S) </math>|| where <math>x</math> non free in <math>S</math> ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_CARD_UPTO </font>||<math>  \card (i \upto  j) \;\;\defi\;\;  j-i+1 </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_CARD_UPTO </font>||<math>  \card (i \upto  j) \;\;\defi\;\;  j-i+1 </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_TYPE_CARD </font>||<math>  \card (\mathit{Tenum}) \;\;\defi\;\;  N </math>|| where <math>\mathit{Tenum}</math> is a carrier set containing <math>N</math> elements ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_TYPE_CARD </font>||<math>  \card (\mathit{Tenum}) \;\;\defi\;\;  N </math>|| where <math>\mathit{Tenum}</math> is a carrier set containing <math>N</math> elements ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_GE_CARD_0 </font>||<math>  \card (S) \geq  1 \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_GE_CARD_0 </font>||<math>  \card (S) \geq  1 \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_LE_CARD_1 </font>||<math>  1 \leq  \card (S) \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_LE_CARD_1 </font>||<math>  1 \leq  \card (S) \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_LE_CARD_0 </font>||<math>  0 \leq  \card (S) \;\;\defi\;\;  \btrue </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_LE_CARD_0 </font>||<math>  0 \leq  \card (S) \;\;\defi\;\;  \btrue </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_GE_CARD_0 </font>||<math>  \card (S) \geq  0 \;\;\defi\;\;  \btrue </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_GE_CARD_0 </font>||<math>  \card (S) \geq  0 \;\;\defi\;\;  \btrue </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_GT_CARD_0 </font>||<math>  \card (S) > 0 \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_GT_CARD_0 </font>||<math>  \card (S) > 0 \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_LT_CARD_0 </font>||<math>  0 < \card (S) \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_LT_CARD_0 </font>||<math>  0 < \card (S) \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_EQUAL_CARD_1 </font>||<math>  \card (S) = 1 \;\;\defi\;\;  \exists x \qdot  S = \{ x\} </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_EQUAL_CARD_1 </font>||<math>  \card (S) = 1 \;\;\defi\;\;  \exists x \qdot  S = \{ x\} </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_CARD_NATURAL </font>||<math>  \card (S) \in  \nat  \;\;\defi\;\;  \btrue </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_CARD_NATURAL </font>||<math>  \card (S) \in  \nat  \;\;\defi\;\;  \btrue </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_CARD_NATURAL1 </font>||<math>  \card (S) \in  \natn  \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_CARD_NATURAL1 </font>||<math>  \card (S) \in  \natn  \;\;\defi\;\;  \lnot\, S = \emptyset </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_IN_NATURAL </font>||<math>  i \in  \nat  \;\;\defi\;\;  \btrue </math>|| where <math>i</math> is a literal ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_IN_NATURAL </font>||<math>  i \in  \nat  \;\;\defi\;\;  \btrue </math>|| where <math>i</math> is a literal ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_IN_NATURAL1 </font>||<math>  0 \in  \natn  \;\;\defi\;\;  \bfalse </math>||  ||  A  | {{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_IN_NATURAL1 </font>||<math>  0 \in  \natn  \;\;\defi\;\;  \bfalse </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_IN_NATURAL1 </font>||<math>  i \in  \natn  \;\;\defi\;\;  \btrue </math>|| where <math>i</math> is a literal and <math>1 \leq i</math> ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_IN_NATURAL1 </font>||<math>  i \in  \natn  \;\;\defi\;\;  \btrue </math>|| where <math>i</math> is a literal and <math>1 \leq i</math> ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_UPTO </font>||<math>  i \upto  j \;\;\defi\;\;  \emptyset </math>|| where <math>i</math> and <math>j</math> are literals and <math>j < i</math> ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_UPTO </font>||<math>  i \upto  j \;\;\defi\;\;  \emptyset </math>|| where <math>i</math> and <math>j</math> are literals and <math>j < i</math> ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_IN_MINUS_NATURAL </font>||<math>  -i \in  \nat  \;\;\defi\;\;  \bfalse </math>|| where <math>i</math> is a literal and <math>1 \leq i</math> ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_IN_MINUS_NATURAL </font>||<math>  -i \in  \nat  \;\;\defi\;\;  \bfalse </math>|| where <math>i</math> is a literal and <math>1 \leq i</math> ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_IN_MINUS_NATURAL1 </font>||<math>  -i \in  \natn  \;\;\defi\;\;  \bfalse </math>|| where <math>i</math> is a literal ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_IN_MINUS_NATURAL1 </font>||<math>  -i \in  \natn  \;\;\defi\;\;  \bfalse </math>|| where <math>i</math> is a literal ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_KBOOL_BTRUE </font>||<math>  \bool (\btrue ) \;\;\defi\;\;  \True </math>||  ||  A  | {{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_KBOOL_BTRUE </font>||<math>  \bool (\btrue ) \;\;\defi\;\;  \True </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_KBOOL_BFALSE </font>||<math>  \bool (\bfalse ) \;\;\defi\;\;  \False </math>||  ||  A  | {{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_KBOOL_BFALSE </font>||<math>  \bool (\bfalse ) \;\;\defi\;\;  \False </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_EQUAL_KBOOL_TRUE </font>||<math>  \bool (P) = \True  \;\;\defi\;\;  P </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_EQUAL_KBOOL_TRUE </font>||<math>  \bool (P) = \True  \;\;\defi\;\;  P </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_EQUAL_KBOOL_FALSE </font>||<math>  \bool (P) = \False  \;\;\defi\;\;  \lnot\, P </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_EQUAL_KBOOL_FALSE </font>||<math>  \bool (P) = \False  \;\;\defi\;\;  \lnot\, P </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> DEF_EQUAL_MIN </font>||<math>  E = \min (S) \;\;\defi\;\;  E \in  S \land  (\forall x \qdot  x \in  S \limp  E \leq  x) </math>|| where <math>x</math> non free in <math>S, E</math> ||  M  | {{RRRow}}|*||<font size="-2"> DEF_EQUAL_MIN </font>||<math>  E = \min (S) \;\;\defi\;\;  E \in  S \land  (\forall x \qdot  x \in  S \limp  E \leq  x) </math>|| where <math>x</math> non free in <math>S, E</math> ||  M  | ||
{{RRRow}}|<font size="-2"> DEF_EQUAL_MAX </font>||<math>  E = \max (S) \;\;\defi\;\;  E \in  S \land  (\forall x \qdot  x \in  S \limp  E \geq  x) </math>|| where <math>x</math> non free in <math>S, E</math> ||  M  | {{RRRow}}|*||<font size="-2"> DEF_EQUAL_MAX </font>||<math>  E = \max (S) \;\;\defi\;\;  E \in  S \land  (\forall x \qdot  x \in  S \limp  E \geq  x) </math>|| where <math>x</math> non free in <math>S, E</math> ||  M  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_PLUS </font>||<math>  E + \ldots  + 0 + \ldots  + F \;\;\defi\;\;  E + \ldots  + F </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_PLUS </font>||<math>  E + \ldots  + 0 + \ldots  + F \;\;\defi\;\;  E + \ldots  + F </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_MINUS_R </font>||<math>  E - 0 \;\;\defi\;\;  E </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_MINUS_R </font>||<math>  E - 0 \;\;\defi\;\;  E </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_MINUS_L </font>||<math>  0 - E \;\;\defi\;\;  -E </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_MINUS_L </font>||<math>  0 - E \;\;\defi\;\;  -E </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_MINUS_MINUS </font>||<math>   - (- E) \;\;\defi\;\;  E </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_MINUS_MINUS </font>||<math>   - (- E) \;\;\defi\;\;  E </math>||  ||  A  | ||
{{RRRow}}|  | {{RRRow}}|*||<font size="-2"> SIMP_MULTI_MINUS </font>||<math>  E - E \;\;\defi\;\;  0 </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_PROD_0 </font>||<math>  E * \ldots  * 0 * \ldots  * F \;\;\defi\;\;  0 </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_PROD_0 </font>||<math>  E * \ldots  * 0 * \ldots  * F \;\;\defi\;\;  0 </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_PROD_1 </font>||<math>  E * \ldots  * 1 * \ldots  * F \;\;\defi\;\;  E * \ldots  * F </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_PROD_1 </font>||<math>  E * \ldots  * 1 * \ldots  * F \;\;\defi\;\;  E * \ldots  * F </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_PROD_MINUS_EVEN </font>||<math>  (-E) * \ldots  * (-F) \;\;\defi\;\;  E * \ldots  * F </math>|| if an even number of <math>-</math> ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_PROD_MINUS_EVEN </font>||<math>  (-E) * \ldots  * (-F) \;\;\defi\;\;  E * \ldots  * F </math>|| if an even number of <math>-</math> ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_PROD_MINUS_ODD </font>||<math>  (-E) * \ldots  * (-F) \;\;\defi\;\;  -(E * \ldots  * F) </math>|| if an odd number of <math>-</math> ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_PROD_MINUS_ODD </font>||<math>  (-E) * \ldots  * (-F) \;\;\defi\;\;  -(E * \ldots  * F) </math>|| if an odd number of <math>-</math> ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_MINUS </font>||<math>   - (i) \;\;\defi\;\;  (-i) </math>|| where <math>i</math> is a literal ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_MINUS </font>||<math>   - (i) \;\;\defi\;\;  (-i) </math>|| where <math>i</math> is a literal ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_MINUS_MINUS </font>||<math>   - (-i) \;\;\defi\;\;  i </math>|| where <math>i</math> is a literal ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_MINUS_MINUS </font>||<math>   - (-i) \;\;\defi\;\;  i </math>|| where <math>i</math> is a literal ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_EQUAL </font>||<math>  <math>i = j<math> \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_EQUAL </font>||<math>  <math>i = j<math> \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_LE </font>||<math>  i \leq  j \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_LE </font>||<math>  i \leq  j \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_LT </font>||<math>  i < j \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_LT </font>||<math>  i < j \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_GE </font>||<math>  i \geq  j \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_GE </font>||<math>  i \geq  j \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_LIT_GT </font>||<math>  <math>i > j<math> \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_LIT_GT </font>||<math>  <math>i > j<math> \;\;\defi\;\;  \btrue  \;or\; \bfalse  \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_DIV_MINUS </font>||<math>  (- E) \div  (-F) \;\;\defi\;\;  E \div  F </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_DIV_MINUS </font>||<math>  (- E) \div  (-F) \;\;\defi\;\;  E \div  F </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_DIV_1 </font>||<math>  E \div  1 \;\;\defi\;\;  E </math>||  ||  A  | {{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_DIV_1 </font>||<math>  E \div  1 \;\;\defi\;\;  E </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_DIV_0 </font>||<math>  0 \div  E \;\;\defi\;\;  0 </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_DIV_0 </font>||<math>  0 \div  E \;\;\defi\;\;  0 </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_EXPN_1 </font>||<math>  E ^ 1 \;\;\defi\;\;  E </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_EXPN_1 </font>||<math>  E ^ 1 \;\;\defi\;\;  E </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_SPECIAL_EXPN_0 </font>||<math>  E ^ 0 \;\;\defi\;\;  1 </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_EXPN_0 </font>||<math>  E ^ 0 \;\;\defi\;\;  1 </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_MULTI_LE </font>||<math>  E \leq  E \;\;\defi\;\;  \btrue </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_MULTI_LE </font>||<math>  E \leq  E \;\;\defi\;\;  \btrue </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_MULTI_LT </font>||<math>  E < E \;\;\defi\;\;  \bfalse </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_MULTI_LT </font>||<math>  E < E \;\;\defi\;\;  \bfalse </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_MULTI_GE </font>||<math>  E \geq  E \;\;\defi\;\;  \btrue </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_MULTI_GE </font>||<math>  E \geq  E \;\;\defi\;\;  \btrue </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_MULTI_GT </font>||<math>  E > E \;\;\defi\;\;  \bfalse </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_MULTI_GT </font>||<math>  E > E \;\;\defi\;\;  \bfalse </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_MULTI_DIV </font>||<math>  E \div  E \;\;\defi\;\;  1 </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_MULTI_DIV </font>||<math>  E \div  E \;\;\defi\;\;  1 </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> SIMP_MULTI_MOD </font>||<math>  E \mod  E \;\;\defi\;\;  0 </math>||  ||  A  | {{RRRow}}|*||<font size="-2"> SIMP_MULTI_MOD </font>||<math>  E \mod  E \;\;\defi\;\;  0 </math>||  ||  A  | ||
{{RRRow}}|<font size="-2"> DISTRI_PROD_PLUS </font>||<math>  a * (b + c) \;\;\defi\;\;  (a * b) + (a * c) </math>||  ||  M  | {{RRRow}}|*||<font size="-2"> DISTRI_PROD_PLUS </font>||<math>  a * (b + c) \;\;\defi\;\;  (a * b) + (a * c) </math>||  ||  M  | ||
{{RRRow}}|<font size="-2"> DISTRI_PROD_MINUS </font>||<math>  a * (b - c) \;\;\defi\;\;  (a * b) - (a * c) </math>||  ||  M  | {{RRRow}}|*||<font size="-2"> DISTRI_PROD_MINUS </font>||<math>  a * (b - c) \;\;\defi\;\;  (a * b) - (a * c) </math>||  ||  M  | ||
{{RRRow}}|<font size="-2"> DERIV_LE_CARD </font>||<math>  \card (S) \leq  \card (T) \;\;\defi\;\;  S \subseteq  T </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M  | {{RRRow}}|*||<font size="-2"> DERIV_LE_CARD </font>||<math>  \card (S) \leq  \card (T) \;\;\defi\;\;  S \subseteq  T </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M  | ||
{{RRRow}}|<font size="-2"> DERIV_GE_CARD </font>||<math>  \card (S) \geq  \card (T) \;\;\defi\;\;  T \subseteq  S </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M  | {{RRRow}}|*||<font size="-2"> DERIV_GE_CARD </font>||<math>  \card (S) \geq  \card (T) \;\;\defi\;\;  T \subseteq  S </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M  | ||
{{RRRow}}|<font size="-2"> DERIV_LT_CARD </font>||<math>  \card (S) < \card (T) \;\;\defi\;\;  S  \subset  T </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M  | {{RRRow}}|*||<font size="-2"> DERIV_LT_CARD </font>||<math>  \card (S) < \card (T) \;\;\defi\;\;  S  \subset  T </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M  | ||
{{RRRow}}|<font size="-2"> DERIV_GT_CARD </font>||<math>  \card (S) > \card (T) \;\;\defi\;\;  T  \subset  S </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M  | {{RRRow}}|*||<font size="-2"> DERIV_GT_CARD </font>||<math>  \card (S) > \card (T) \;\;\defi\;\;  T  \subset  S </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M  | ||
{{RRRow}}|<font size="-2"> DERIV_EQUAL_CARD </font>||<math>  \card (S) = \card (T) \;\;\defi\;\;  S = T  </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M    | {{RRRow}}|*||<font size="-2"> DERIV_EQUAL_CARD </font>||<math>  \card (S) = \card (T) \;\;\defi\;\;  S = T  </math>|| <math>S</math> and <math>T</math> must be of the same type ||  M    | ||
|}  | |}  | ||
Revision as of 17:06, 11 February 2009
| Name | Rule | Side Condition | A/M | |
|---|---|---|---|---|
| SIMP_SPECIAL_MOD_0 | ![]()  | 
A | ||
| SIMP_SPECIAL_MOD_1 | ![]()  | 
A | ||
| * | SIMP_MIN_SING | ![]()  | 
where   is a single expression | 
A | 
| * | SIMP_MAX_SING | ![]()  | 
where   is a single expression | 
A | 
| * | SIMP_MIN_NATURAL | ![]()  | 
A | |
| * | SIMP_MIN_NATURAL1 | ![]()  | 
A | |
| * | SIMP_MIN_BUNION_SING | ![]()  | 
A | |
| * | SIMP_MAX_BUNION_SING | ![]()  | 
A | |
| * | SIMP_MIN_UPTO | ![]()  | 
A | |
| * | SIMP_MAX_UPTO | ![]()  | 
A | |
| * | SIMP_LIT_MIN | ![]()  | 
where   and   are literals and ![]()  | 
A | 
| * | SIMP_LIT_MAX | ![]()  | 
where   and   are literals and ![]()  | 
A | 
| * | SIMP_LIT_MIN_UPTO | ![]()  | 
where   are literals | 
A | 
| * | SIMP_LIT_MAX_UPTO | ![]()  | 
where   are literals | 
A | 
| * | SIMP_SPECIAL_CARD | ![]()  | 
A | |
| * | SIMP_CARD_SING | ![]()  | 
where   is a single expression | 
A | 
| * | SIMP_SPECIAL_EQUAL_CARD | ![]()  | 
A | |
| * | SIMP_CARD_POW | ![]()  | 
A | |
| * | SIMP_CARD_BUNION | ![]()  | 
A | |
| * | SIMP_CARD_CONVERSE | ![]()  | 
A | |
| * | SIMP_CARD_ID | ![]()  | 
A | |
| * | SIMP_CARD_LAMBDA | ![]()  | 
A | |
| * | SIMP_CARD_COMPSET | ![]()  | 
where   non free in ![]()  | 
A | 
| * | SIMP_LIT_CARD_UPTO | ![]()  | 
where   and   are literals and ![]()  | 
A | 
| * | SIMP_TYPE_CARD | ![]()  | 
where   is a carrier set containing   elements | 
A | 
| * | SIMP_LIT_GE_CARD_0 | ![]()  | 
A | |
| * | SIMP_LIT_LE_CARD_1 | ![]()  | 
A | |
| * | SIMP_LIT_LE_CARD_0 | ![]()  | 
A | |
| * | SIMP_LIT_GE_CARD_0 | ![]()  | 
A | |
| * | SIMP_LIT_GT_CARD_0 | ![]()  | 
A | |
| * | SIMP_LIT_LT_CARD_0 | ![]()  | 
A | |
| * | SIMP_LIT_EQUAL_CARD_1 | ![]()  | 
A | |
| * | SIMP_CARD_NATURAL | ![]()  | 
A | |
| * | SIMP_CARD_NATURAL1 | ![]()  | 
A | |
| * | SIMP_LIT_IN_NATURAL | ![]()  | 
where   is a literal | 
A | 
| SIMP_SPECIAL_IN_NATURAL1 | ![]()  | 
A | ||
| * | SIMP_LIT_IN_NATURAL1 | ![]()  | 
where   is a literal and ![]()  | 
A | 
| * | SIMP_LIT_UPTO | ![]()  | 
where   and   are literals and ![]()  | 
A | 
| * | SIMP_LIT_IN_MINUS_NATURAL | ![]()  | 
where   is a literal and ![]()  | 
A | 
| * | SIMP_LIT_IN_MINUS_NATURAL1 | ![]()  | 
where   is a literal | 
A | 
| SIMP_SPECIAL_KBOOL_BTRUE | ![]()  | 
A | ||
| SIMP_SPECIAL_KBOOL_BFALSE | ![]()  | 
A | ||
| * | SIMP_LIT_EQUAL_KBOOL_TRUE | ![]()  | 
A | |
| * | SIMP_LIT_EQUAL_KBOOL_FALSE | ![]()  | 
A | |
| * | DEF_EQUAL_MIN | ![]()  | 
where   non free in ![]()  | 
M | 
| * | DEF_EQUAL_MAX | ![]()  | 
where   non free in ![]()  | 
M | 
| * | SIMP_SPECIAL_PLUS | ![]()  | 
A | |
| * | SIMP_SPECIAL_MINUS_R | ![]()  | 
A | |
| * | SIMP_SPECIAL_MINUS_L | ![]()  | 
A | |
| * | SIMP_MINUS_MINUS | ![]()  | 
A | |
| * | SIMP_MULTI_MINUS | ![]()  | 
A | |
| * | SIMP_SPECIAL_PROD_0 | ![]()  | 
A | |
| * | SIMP_SPECIAL_PROD_1 | ![]()  | 
A | |
| * | SIMP_SPECIAL_PROD_MINUS_EVEN | ![]()  | 
if an even number of ![]()  | 
A | 
| * | SIMP_SPECIAL_PROD_MINUS_ODD | ![]()  | 
if an odd number of ![]()  | 
A | 
| * | SIMP_LIT_MINUS | ![]()  | 
where   is a literal | 
A | 
| * | SIMP_LIT_MINUS_MINUS | ![]()  | 
where   is a literal | 
A | 
| * | SIMP_LIT_EQUAL | ![]()  | 
where   and   are literals | 
A | 
| * | SIMP_LIT_LE | ![]()  | 
where   and   are literals | 
A | 
| * | SIMP_LIT_LT | ![]()  | 
where   and   are literals | 
A | 
| * | SIMP_LIT_GE | ![]()  | 
where   and   are literals | 
A | 
| * | SIMP_LIT_GT | ![]()  | 
where   and   are literals | 
A | 
| * | SIMP_DIV_MINUS | ![]()  | 
A | |
| SIMP_SPECIAL_DIV_1 | ![]()  | 
A | ||
| * | SIMP_SPECIAL_DIV_0 | ![]()  | 
A | |
| * | SIMP_SPECIAL_EXPN_1 | ![]()  | 
A | |
| * | SIMP_SPECIAL_EXPN_0 | ![]()  | 
A | |
| * | SIMP_MULTI_LE | ![]()  | 
A | |
| * | SIMP_MULTI_LT | ![]()  | 
A | |
| * | SIMP_MULTI_GE | ![]()  | 
A | |
| * | SIMP_MULTI_GT | ![]()  | 
A | |
| * | SIMP_MULTI_DIV | ![]()  | 
A | |
| * | SIMP_MULTI_MOD | ![]()  | 
A | |
| * | DISTRI_PROD_PLUS | ![]()  | 
M | |
| * | DISTRI_PROD_MINUS | ![]()  | 
M | |
| * | DERIV_LE_CARD | ![]()  | 
  and   must be of the same type | 
M | 
| * | DERIV_GE_CARD | ![]()  | 
  and   must be of the same type | 
M | 
| * | DERIV_LT_CARD | ![]()  | 
  and   must be of the same type | 
M | 
| * | DERIV_GT_CARD | ![]()  | 
  and   must be of the same type | 
M | 
| * | DERIV_EQUAL_CARD | ![]()  | 
  and   must be of the same type | 
M | 



 is a single expression







 and 
 are literals and 



 are literals









 non free in 


 is a carrier set containing 
 elements






















































 must be of the same type


