Set Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Laurent mNo edit summary |
imported>Laurent Changed EXIST to EXISTS in rule names + changed SIMP_EXISTS_AND into SIMP_EXISTS_OR |
||
Line 35: | Line 35: | ||
{{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_NOT_EQUAL_TRUE_L </font>||<math> \lnot\, (\True = E) \;\;\defi\;\; (\False = E) </math>|| || A | {{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_NOT_EQUAL_TRUE_L </font>||<math> \lnot\, (\True = E) \;\;\defi\;\; (\False = E) </math>|| || A | ||
{{RRRow}}|*||<font size="-2"> SIMP_FORALL_AND </font>||<math> \forall x \qdot P \land Q \;\;\defi\;\; (\forall x \qdot P) \land (\forall x \qdot Q) </math>|| || A | {{RRRow}}|*||<font size="-2"> SIMP_FORALL_AND </font>||<math> \forall x \qdot P \land Q \;\;\defi\;\; (\forall x \qdot P) \land (\forall x \qdot Q) </math>|| || A | ||
{{RRRow}}|*||<font size="-2"> | {{RRRow}}|*||<font size="-2"> SIMP_EXISTS_OR </font>||<math> \exists x \qdot P \lor Q \;\;\defi\;\; (\exists x \qdot P) \lor (\exists x \qdot Q) </math>|| || A | ||
{{RRRow}}|*||<font size="-2"> SIMP_FORALL </font>||<math> \forall \ldots ,z,\ldots \qdot P(z) \;\;\defi\;\; \forall z \qdot P(z) </math>|| || A | {{RRRow}}|*||<font size="-2"> SIMP_FORALL </font>||<math> \forall \ldots ,z,\ldots \qdot P(z) \;\;\defi\;\; \forall z \qdot P(z) </math>|| || A | ||
{{RRRow}}|*||<font size="-2"> | {{RRRow}}|*||<font size="-2"> SIMP_EXISTS </font>||<math> \exists \ldots ,z,\ldots \qdot P(z) \;\;\defi\;\; \exists z \qdot P(z) </math>|| || A | ||
{{RRRow}}|*||<font size="-2"> SIMP_MULTI_EQUAL </font>||<math> E = E \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}|*||<font size="-2"> SIMP_MULTI_EQUAL </font>||<math> E = E \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}|*||<font size="-2"> SIMP_MULTI_NOTEQUAL </font>||<math> E \neq E \;\;\defi\;\; \bfalse </math>|| || A | {{RRRow}}|*||<font size="-2"> SIMP_MULTI_NOTEQUAL </font>||<math> E \neq E \;\;\defi\;\; \bfalse </math>|| || A | ||
Line 131: | Line 131: | ||
{{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_FORALL_BTRUE </font>||<math> \forall x \qdot \btrue \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_FORALL_BTRUE </font>||<math> \forall x \qdot \btrue \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_FORALL_BFALSE </font>||<math> \forall x \qdot \bfalse \;\;\defi\;\; \bfalse </math>|| || A | {{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_FORALL_BFALSE </font>||<math> \forall x \qdot \bfalse \;\;\defi\;\; \bfalse </math>|| || A | ||
{{RRRow}}| ||<font size="-2"> | {{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_EXISTS_BTRUE </font>||<math> \exists x \qdot \btrue \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}| ||<font size="-2"> | {{RRRow}}| ||<font size="-2"> SIMP_SPECIAL_EXISTS_BFALSE </font>||<math> \exists x \qdot \bfalse \;\;\defi\;\; \bfalse </math>|| || A | ||
{{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_EQV_BTRUE </font>||<math> P \leqv \btrue \;\;\defi\;\; P </math>|| || A | {{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_EQV_BTRUE </font>||<math> P \leqv \btrue \;\;\defi\;\; P </math>|| || A | ||
{{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_EQV_BFALSE </font>||<math> P \leqv \bfalse \;\;\defi\;\; \lnot\, P </math>|| || A | {{RRRow}}|*||<font size="-2"> SIMP_SPECIAL_EQV_BFALSE </font>||<math> P \leqv \bfalse \;\;\defi\;\; \lnot\, P </math>|| || A | ||
Line 151: | Line 151: | ||
{{RRRow}}|*||<font size="-2"> DERIV_NOT_IMP </font>||<math> \lnot\,(P \limp Q) \;\;\defi\;\; P \limp \lnot\, Q </math>|| || M | {{RRRow}}|*||<font size="-2"> DERIV_NOT_IMP </font>||<math> \lnot\,(P \limp Q) \;\;\defi\;\; P \limp \lnot\, Q </math>|| || M | ||
{{RRRow}}|*||<font size="-2"> DERIV_NOT_FORALL </font>||<math> \lnot\, \forall x \qdot P \;\;\defi\;\; \exists x \qdot \lnot\, P </math>|| || M | {{RRRow}}|*||<font size="-2"> DERIV_NOT_FORALL </font>||<math> \lnot\, \forall x \qdot P \;\;\defi\;\; \exists x \qdot \lnot\, P </math>|| || M | ||
{{RRRow}}|*||<font size="-2"> | {{RRRow}}|*||<font size="-2"> DERIV_NOT_EXISTS </font>||<math> \lnot\, \exists x \qdot P \;\;\defi\;\; \forall x \qdot \lnot\, P </math>|| || M | ||
{{RRRow}}|*||<font size="-2"> DEF_SPECIAL_NOT_EQUAL </font>||<math> \lnot\, S = \emptyset \;\;\defi\;\; \exists x \qdot x \in S </math>|| || M | {{RRRow}}|*||<font size="-2"> DEF_SPECIAL_NOT_EQUAL </font>||<math> \lnot\, S = \emptyset \;\;\defi\;\; \exists x \qdot x \in S </math>|| || M | ||
{{RRRow}}|*||<font size="-2"> DEF_IN_MAPSTO </font>||<math> E \mapsto F \in S \cprod T \;\;\defi\;\; E \in S \land F \in T </math>|| || M | {{RRRow}}|*||<font size="-2"> DEF_IN_MAPSTO </font>||<math> E \mapsto F \in S \cprod T \;\;\defi\;\; E \in S \land F \in T </math>|| || M |
Revision as of 17:21, 11 February 2009
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | SIMP_SPECIAL_AND_BTRUE | A | ||
* | SIMP_SPECIAL_AND_BFALSE | A | ||
* | SIMP_MULTI_AND | A | ||
* | SIMP_MULTI_AND_NOT | A | ||
* | SIMP_SPECIAL_OR_BTRUE | A | ||
* | SIMP_SPECIAL_OR_BFALSE | A | ||
* | SIMP_MULTI_OR | A | ||
* | SIMP_MULTI_OR_NOT | A | ||
* | SIMP_SPECIAL_IMP_BTRUE_R | A | ||
* | SIMP_SPECIAL_IMP_BTRUE_L | A | ||
* | SIMP_SPECIAL_IMP_BFALSE_R | A | ||
* | SIMP_SPECIAL_IMP_BFALSE_L | A | ||
* | SIMP_MULTI_IMP | A | ||
* | SIMP_MULTI_IMP_OR | A | ||
* | SIMP_MULTI_IMP_AND_NOT_R | A | ||
* | SIMP_MULTI_IMP_AND_NOT_L | A | ||
* | SIMP_MULTI_EQV | A | ||
* | SIMP_MULTI_EQV_NOT | A | ||
* | SIMP_MULTI_EQV_NOT_NOT | A | ||
* | SIMP_SPECIAL_NOT_BTRUE | A | ||
* | SIMP_SPECIAL_NOT_BFALSE | A | ||
* | SIMP_NOT_NOT | A | ||
* | SIMP_NOTEQUAL | A | ||
* | SIMP_NOTIN | A | ||
* | SIMP_NOTSUBSET | A | ||
* | SIMP_NOTSUBSETEQ | A | ||
* | SIMP_NOT_LE | A | ||
* | SIMP_NOT_GE | A | ||
* | SIMP_NOT_LT | A | ||
* | SIMP_NOT_GT | A | ||
* | SIMP_SPECIAL_NOT_EQUAL_FALSE_R | A | ||
* | SIMP_SPECIAL_NOT_EQUAL_FALSE_L | A | ||
* | SIMP_SPECIAL_NOT_EQUAL_TRUE_R | A | ||
* | SIMP_SPECIAL_NOT_EQUAL_TRUE_L | A | ||
* | SIMP_FORALL_AND | A | ||
* | SIMP_EXISTS_OR | A | ||
* | SIMP_FORALL | A | ||
* | SIMP_EXISTS | A | ||
* | SIMP_MULTI_EQUAL | A | ||
* | SIMP_MULTI_NOTEQUAL | A | ||
* | SIMP_EQUAL_MAPSTO | A | ||
* | SIMP_EQUAL_SING | A | ||
* | SIMP_SPECIAL_EQUAL_TRUE | A | ||
* | SIMP_TYPE_SUBSETEQ | where is a type expression | A | |
* | SIMP_SUBSETEQ_SING | where is a single expression | A | |
* | SIMP_SPECIAL_SUBSETEQ | A | ||
* | SIMP_MULTI_SUBSETEQ | A | ||
* | SIMP_SUBSETEQ_BUNION | A | ||
* | SIMP_SUBSETEQ_BINTER | A | ||
* | DERIV_SUBSETEQ_BUNION | M | ||
* | DERIV_SUBSETEQ_BINTER | M | ||
* | SIMP_SUBSET_BUNION | A | ||
* | SIMP_SUBSET_BINTER | A | ||
* | SIMP_SPECIAL_IN | A | ||
* | SIMP_MULTI_IN | A | ||
* | SIMP_IN_SING | A | ||
* | SIMP_MULTI_SETENUM | A | ||
* | SIMP_SPECIAL_BINTER | A | ||
* | SIMP_TYPE_BINTER | where is a type expression | A | |
* | SIMP_MULTI_BINTER | A | ||
* | SIMP_MULTI_EQUAL_BINTER | A | ||
* | SIMP_SPECIAL_BUNION | A | ||
* | SIMP_TYPE_BUNION | where is a type expression | A | |
* | SIMP_MULTI_BUNION | A | ||
* | SIMP_MULTI_EQUAL_BUNION | A | ||
* | SIMP_MULTI_SETMINUS | A | ||
* | SIMP_SPECIAL_SETMINUS_R | A | ||
* | SIMP_SPECIAL_SETMINUS_L | A | ||
* | SIMP_TYPE_SETMINUS | where is a type expression | A | |
* | SIMP_TYPE_SETMINUS_SETMINUS | where is a type expression | A | |
* | SIMP_TYPE_KUNION | where is a type expression and | A | |
* | SIMP_KUNION_POW | A | ||
* | SIMP_KUNION_POW1 | A | ||
SIMP_SPECIAL_KUNION | A | |||
SIMP_SPECIAL_QUNION | A | |||
SIMP_SPECIAL_KINTER | A | |||
* | SIMP_TYPE_KINTER | where is a type expression | A | |
SIMP_SPECIAL_POW | A | |||
SIMP_SPECIAL_POW1 | A | |||
SIMP_SPECIAL_CPROD_R | A | |||
SIMP_SPECIAL_CPROD_L | A | |||
* | SIMP_COMPSET_EQUAL | where non free in | A | |
* | SIMP_COMPSET_IN | where non free in | A | |
SIMP_SPECIAL_COMPSET_BFALSE | A | |||
SIMP_SPECIAL_COMPSET_BTRUE | where the type od is | A | ||
* | SIMP_SUBSETEQ_COMPSET_L | where non free in | A | |
SIMP_SPECIAL_EQUAL_COMPSET | A | |||
* | SIMP_IN_COMPSET | A | ||
* | SIMP_SUBSETEQ_COMPSET_R | where non free in | A | |
SIMP_SPECIAL_OVERL | A | |||
* | SIMP_MULTI_OVERL | A | ||
* | SIMP_TYPE_OVERL_CPROD | where is a type expression | A | |
* | SIMP_SPECIAL_KBOOL_BTRUE | A | ||
* | SIMP_SPECIAL_KBOOL_BFALSE | A | ||
* | DISTRI_SUBSETEQ_BUNION_SING | where is a single expression | M | |
* | SIMP_SPECIAL_FINITE | A | ||
* | SIMP_FINITE_SETENUM | A | ||
* | SIMP_FINITE_BUNION | A | ||
* | SIMP_FINITE_POW | A | ||
* | DERIV_FINITE_CPROD | A | ||
* | SIMP_FINITE_CONVERSE | A | ||
* | SIMP_FINITE_UPTO | A | ||
* | SIMP_FINITE_BINTER_L | M | ||
* | SIMP_FINITE_BINTER_R | M | ||
* | SIMP_FINITE_SETMINUS | M | ||
* | SIMP_FINITE_DOMRES | M | ||
* | SIMP_FINITE_RANRES | M | ||
* | SIMP_FINITE_DOMSUB | M | ||
* | SIMP_FINITE_RANSUB | M | ||
* | SIMP_FINITE_RELIMAGE | M | ||
* | SIMP_FINITE_CPROD | M | ||
* | SIMP_FINITE_OVERL | M | ||
* | SIMP_FINITE_REL | M | ||
* | SIMP_FINITE_FCOMP | M | ||
* | SIMP_FINITE_BCOMP | M | ||
* | SIMP_FINITE_DPROD | M | ||
* | SIMP_FINITE_PPROD | M | ||
* | SIMP_FINITE_COMPSET | where non free in | M | |
* | SIMP_FINITE_RAN | M | ||
* | SIMP_FINITE_DOM | M | ||
* | SIMP_FINITE_QUNION | M | ||
* | SIMP_FINITE_QINTER | M | ||
* | SIMP_FINITE_ID | A | ||
* | SIMP_FINITE_NATURAL | A | ||
* | SIMP_FINITE_NATURAL1 | A | ||
* | SIMP_FINITE_INTEGER | A | ||
* | SIMP_FINITE_LAMBDA | A | ||
* | SIMP_TYPE_EQUAL_EMPTY | where is a type expression | A | |
* | SIMP_TYPE_IN | where is a type expression | A | |
SIMP_SPECIAL_FORALL_BTRUE | A | |||
SIMP_SPECIAL_FORALL_BFALSE | A | |||
SIMP_SPECIAL_EXISTS_BTRUE | A | |||
SIMP_SPECIAL_EXISTS_BFALSE | A | |||
* | SIMP_SPECIAL_EQV_BTRUE | A | ||
* | SIMP_SPECIAL_EQV_BFALSE | A | ||
SIMP_SPECIAL_SUBSET_R | A | |||
SIMP_SPECIAL_SUBSET_L | A | |||
* | SIMP_TYPE_SUBSET_L | where is a type expression | A | |
* | SIMP_MULTI_SUBSET | A | ||
* | DISTRI_AND_OR | M | ||
* | DISTRI_OR_AND | M | ||
* | DEF_OR | M | ||
* | DERIV_IMP | M | ||
* | DERIV_IMP_IMP | M | ||
* | DISTRI_IMP_AND | M | ||
* | DISTRI_IMP_OR | M | ||
* | DEF_EQV | M | ||
* | DISTRI_NOT_AND | M | ||
* | DISTRI_NOT_OR | M | ||
* | DERIV_NOT_IMP | M | ||
* | DERIV_NOT_FORALL | M | ||
* | DERIV_NOT_EXISTS | M | ||
* | DEF_SPECIAL_NOT_EQUAL | M | ||
* | DEF_IN_MAPSTO | M | ||
* | DEF_IN_POW | M | ||
* | DEF_SUBSETEQ | M | ||
* | DEF_IN_BUNION | M | ||
* | DEF_IN_BINTER | M | ||
* | DEF_IN_SETMINUS | M | ||
* | DEF_IN_SETENUM | M | ||
* | DEF_IN_KUNION | M | ||
* | DEF_IN_QUNION | M | ||
* | DEF_IN_KINTER | M | ||
* | DEF_IN_QINTER | M | ||
* | DISTRI_BUNION_BINTER | M | ||
* | DISTRI_BINTER_BUNION | M | ||
* | DISTRI_BINTER_SETMINUS | M | ||
* | DISTRI_SETMINUS_BUNION | M | ||
* | DERIV_TYPE_SETMINUS_BINTER | where is a type expression | M | |
* | DERIV_TYPE_SETMINUS_BUNION | where is a type expression | M | |
* | DERIV_TYPE_SETMINUS_SETMINUS | where is a type expression | M | |
* | DISTRI_CPROD_BINTER | M | ||
* | DISTRI_CPROD_BUNION | M | ||
* | DISTRI_CPROD_SETMINUS | M | ||
* | DERIV_SUBSETEQ | where is the type of and | M | |
* | DERIV_EQUAL | where is the type of and | M | |
* | DERIV_SUBSETEQ_SETMINUS_L | M | ||
* | DERIV_SUBSETEQ_SETMINUS_R | M |