Set Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Benoit Added rule SIMP_FINITE_BOOL. |
imported>Benoit Removed rules SIMP_SPECIAL_FORALL_BTRUE, SIMP_SPECIAL_FORALL_BFALSE, SIMP_SPECIAL_EXISTS_BTRUE, SIMP_SPECIAL_EXISTS_BFALSE. |
||
Line 139: | Line 139: | ||
{{RRRow}}|*||{{Rulename|SIMP_FINITE_NATURAL1}}||<math> \finite (\natn ) \;\;\defi\;\; \bfalse </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_FINITE_NATURAL1}}||<math> \finite (\natn ) \;\;\defi\;\; \bfalse </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_FINITE_INTEGER}}||<math> \finite (\intg ) \;\;\defi\;\; \bfalse </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_FINITE_INTEGER}}||<math> \finite (\intg ) \;\;\defi\;\; \bfalse </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_FINITE_BOOL}}||<math> \finite (\Bool ) \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_FINITE_BOOL}}||<math> \finite (\Bool ) \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_FINITE_LAMBDA}}||<math> \finite(\{x\qdot P\mid E\mapsto F\}) \;\;\defi\;\; \finite(\{x\qdot P\mid E\} ) </math>|| where <math>E</math> is a maplet combination of bound identifiers and expressions that are not bound by the comprehension set (i.e., <math>E</math> is syntactically injective) and all identifiers bound by the comprehension set that occur in <math>F</math> also occur in <math>E</math> || A | {{RRRow}}|*||{{Rulename|SIMP_FINITE_LAMBDA}}||<math> \finite(\{x\qdot P\mid E\mapsto F\}) \;\;\defi\;\; \finite(\{x\qdot P\mid E\} ) </math>|| where <math>E</math> is a maplet combination of bound identifiers and expressions that are not bound by the comprehension set (i.e., <math>E</math> is syntactically injective) and all identifiers bound by the comprehension set that occur in <math>F</math> also occur in <math>E</math> || A | ||
{{RRRow}}|*||{{Rulename|SIMP_TYPE_EQUAL_EMPTY}}||<math> \mathit{Ty} = \emptyset \;\;\defi\;\; \bfalse </math>|| where <math>\mathit{Ty}</math> is a type expression || A | {{RRRow}}|*||{{Rulename|SIMP_TYPE_EQUAL_EMPTY}}||<math> \mathit{Ty} = \emptyset \;\;\defi\;\; \bfalse </math>|| where <math>\mathit{Ty}</math> is a type expression || A | ||
{{RRRow}}|*||{{Rulename|SIMP_TYPE_IN}}||<math> t \in \mathit{Ty} \;\;\defi\;\; \btrue </math>|| where <math>\mathit{Ty}</math> is a type expression || A | {{RRRow}}|*||{{Rulename|SIMP_TYPE_IN}}||<math> t \in \mathit{Ty} \;\;\defi\;\; \btrue </math>|| where <math>\mathit{Ty}</math> is a type expression || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EQV_BTRUE}}||<math> P \leqv \btrue \;\;\defi\;\; P </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EQV_BTRUE}}||<math> P \leqv \btrue \;\;\defi\;\; P </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EQV_BFALSE}}||<math> P \leqv \bfalse \;\;\defi\;\; \lnot\, P </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EQV_BFALSE}}||<math> P \leqv \bfalse \;\;\defi\;\; \lnot\, P </math>|| || A |
Revision as of 09:08, 18 January 2011
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Rewrite_Rules.
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | SIMP_SPECIAL_AND_BTRUE |
A | ||
* | SIMP_SPECIAL_AND_BFALSE |
A | ||
* | SIMP_MULTI_AND |
A | ||
* | SIMP_MULTI_AND_NOT |
A | ||
* | SIMP_SPECIAL_OR_BTRUE |
A | ||
* | SIMP_SPECIAL_OR_BFALSE |
A | ||
* | SIMP_MULTI_OR |
A | ||
* | SIMP_MULTI_OR_NOT |
A | ||
* | SIMP_SPECIAL_IMP_BTRUE_R |
A | ||
* | SIMP_SPECIAL_IMP_BTRUE_L |
A | ||
* | SIMP_SPECIAL_IMP_BFALSE_R |
A | ||
* | SIMP_SPECIAL_IMP_BFALSE_L |
A | ||
* | SIMP_MULTI_IMP |
A | ||
* | SIMP_MULTI_IMP_OR |
A | ||
* | SIMP_MULTI_IMP_AND_NOT_R |
A | ||
* | SIMP_MULTI_IMP_AND_NOT_L |
A | ||
* | SIMP_MULTI_EQV |
A | ||
* | SIMP_MULTI_EQV_NOT |
A | ||
* | SIMP_SPECIAL_NOT_BTRUE |
A | ||
* | SIMP_SPECIAL_NOT_BFALSE |
A | ||
* | SIMP_NOT_NOT |
A | ||
* | SIMP_NOTEQUAL |
A | ||
* | SIMP_NOTIN |
A | ||
* | SIMP_NOTSUBSET |
A | ||
* | SIMP_NOTSUBSETEQ |
A | ||
* | SIMP_NOT_LE |
A | ||
* | SIMP_NOT_GE |
A | ||
* | SIMP_NOT_LT |
A | ||
* | SIMP_NOT_GT |
A | ||
* | SIMP_SPECIAL_NOT_EQUAL_FALSE_R |
A | ||
* | SIMP_SPECIAL_NOT_EQUAL_FALSE_L |
A | ||
* | SIMP_SPECIAL_NOT_EQUAL_TRUE_R |
A | ||
* | SIMP_SPECIAL_NOT_EQUAL_TRUE_L |
A | ||
* | SIMP_FORALL_AND |
A | ||
* | SIMP_EXISTS_OR |
A | ||
* | SIMP_FORALL |
Quantified identifiers other than do not occur in | A | |
* | SIMP_EXISTS |
Quantified identifiers other than do not occur in | A | |
* | SIMP_MULTI_EQUAL |
A | ||
* | SIMP_MULTI_NOTEQUAL |
A | ||
* | SIMP_EQUAL_MAPSTO |
A | ||
* | SIMP_EQUAL_SING |
A | ||
* | SIMP_SPECIAL_EQUAL_TRUE |
A | ||
* | SIMP_TYPE_SUBSETEQ |
where is a type expression | A | |
* | SIMP_SUBSETEQ_SING |
where is a single expression | A | |
* | SIMP_SPECIAL_SUBSETEQ |
A | ||
* | SIMP_MULTI_SUBSETEQ |
A | ||
* | SIMP_SUBSETEQ_BUNION |
A | ||
* | SIMP_SUBSETEQ_BINTER |
A | ||
* | DERIV_SUBSETEQ_BUNION |
M | ||
* | DERIV_SUBSETEQ_BINTER |
M | ||
* | SIMP_SPECIAL_IN |
A | ||
* | SIMP_MULTI_IN |
A | ||
* | SIMP_IN_SING |
A | ||
* | SIMP_MULTI_SETENUM |
A | ||
* | SIMP_SPECIAL_BINTER |
A | ||
* | SIMP_TYPE_BINTER |
where is a type expression | A | |
* | SIMP_MULTI_BINTER |
A | ||
* | SIMP_MULTI_EQUAL_BINTER |
A | ||
* | SIMP_SPECIAL_BUNION |
A | ||
* | SIMP_TYPE_BUNION |
where is a type expression | A | |
* | SIMP_MULTI_BUNION |
A | ||
* | SIMP_MULTI_EQUAL_BUNION |
A | ||
* | SIMP_MULTI_SETMINUS |
A | ||
* | SIMP_SPECIAL_SETMINUS_R |
A | ||
* | SIMP_SPECIAL_SETMINUS_L |
A | ||
* | SIMP_TYPE_SETMINUS |
where is a type expression | A | |
* | SIMP_TYPE_SETMINUS_SETMINUS |
where is a type expression | A | |
* | SIMP_KUNION_POW |
A | ||
* | SIMP_KUNION_POW1 |
A | ||
* | SIMP_SPECIAL_KUNION |
A | ||
* | SIMP_SPECIAL_QUNION |
A | ||
* | SIMP_SPECIAL_KINTER |
A | ||
* | SIMP_KINTER_POW |
A | ||
* | SIMP_SPECIAL_POW |
A | ||
* | SIMP_SPECIAL_POW1 |
A | ||
* | SIMP_SPECIAL_CPROD_R |
A | ||
* | SIMP_SPECIAL_CPROD_L |
A | ||
SIMP_COMPSET_EQUAL |
where non free in | A | ||
* | SIMP_COMPSET_IN |
where non free in | A | |
* | SIMP_COMPSET_SUBSETEQ |
where non free in | A | |
* | SIMP_SPECIAL_COMPSET_BFALSE |
A | ||
* | SIMP_SPECIAL_COMPSET_BTRUE |
where the type of is | A | |
* | SIMP_SUBSETEQ_COMPSET_L |
where is fresh | A | |
* | SIMP_SPECIAL_EQUAL_COMPSET |
A | ||
* | SIMP_IN_COMPSET |
where , , are not free in | A | |
* | SIMP_IN_COMPSET_ONEPOINT |
Equivalent to general simplification followed by One Point Rule application with the last conjunct predicate | A | |
SIMP_SUBSETEQ_COMPSET_R |
where non free in | A | ||
* | SIMP_SPECIAL_OVERL |
A | ||
* | SIMP_SPECIAL_KBOOL_BTRUE |
A | ||
* | SIMP_SPECIAL_KBOOL_BFALSE |
A | ||
DISTRI_SUBSETEQ_BUNION_SING |
where is a single expression | M | ||
DEF_FINITE |
M | |||
* | SIMP_SPECIAL_FINITE |
A | ||
* | SIMP_FINITE_SETENUM |
A | ||
* | SIMP_FINITE_BUNION |
A | ||
SIMP_FINITE_UNION |
M | |||
SIMP_FINITE_QUNION |
M | |||
* | SIMP_FINITE_POW |
A | ||
* | DERIV_FINITE_CPROD |
A | ||
* | SIMP_FINITE_CONVERSE |
A | ||
* | SIMP_FINITE_UPTO |
A | ||
* | SIMP_FINITE_ID |
where has type | A | |
* | SIMP_FINITE_ID_DOMRES |
A | ||
* | SIMP_FINITE_PRJ1 |
where has type | A | |
* | SIMP_FINITE_PRJ2 |
where has type | A | |
* | SIMP_FINITE_PRJ1_DOMRES |
A | ||
* | SIMP_FINITE_PRJ2_DOMRES |
A | ||
* | SIMP_FINITE_NATURAL |
A | ||
* | SIMP_FINITE_NATURAL1 |
A | ||
* | SIMP_FINITE_INTEGER |
A | ||
* | SIMP_FINITE_BOOL |
A | ||
* | SIMP_FINITE_LAMBDA |
where is a maplet combination of bound identifiers and expressions that are not bound by the comprehension set (i.e., is syntactically injective) and all identifiers bound by the comprehension set that occur in also occur in | A | |
* | SIMP_TYPE_EQUAL_EMPTY |
where is a type expression | A | |
* | SIMP_TYPE_IN |
where is a type expression | A | |
* | SIMP_SPECIAL_EQV_BTRUE |
A | ||
* | SIMP_SPECIAL_EQV_BFALSE |
A | ||
* | DEF_SUBSET |
A | ||
* | SIMP_SPECIAL_SUBSET_R |
A | ||
* | SIMP_SPECIAL_SUBSET_L |
A | ||
* | SIMP_TYPE_SUBSET_L |
where is a type expression | A | |
* | SIMP_MULTI_SUBSET |
A | ||
* | SIMP_EQUAL_CONSTR |
where is a datatype constructor | A | |
* | SIMP_EQUAL_CONSTR_DIFF |
where and are different datatype constructors | A | |
* | SIMP_DESTR_CONSTR |
where is the datatype destructor for the i-th argument of datatype constructor | A | |
* | DISTRI_AND_OR |
M | ||
* | DISTRI_OR_AND |
M | ||
* | DEF_OR |
M | ||
* | DERIV_IMP |
M | ||
* | DERIV_IMP_IMP |
M | ||
* | DISTRI_IMP_AND |
M | ||
* | DISTRI_IMP_OR |
M | ||
* | DEF_EQV |
M | ||
* | DISTRI_NOT_AND |
M | ||
* | DISTRI_NOT_OR |
M | ||
* | DERIV_NOT_IMP |
M | ||
* | DERIV_NOT_FORALL |
M | ||
* | DERIV_NOT_EXISTS |
M | ||
* | DEF_SPECIAL_NOT_EQUAL |
where is not free in | M | |
* | DEF_IN_MAPSTO |
M | ||
* | DEF_IN_POW |
M | ||
* | DEF_IN_POW1 |
M | ||
* | DEF_SUBSETEQ |
where is not free in or | M | |
* | DEF_IN_BUNION |
M | ||
* | DEF_IN_BINTER |
M | ||
* | DEF_IN_SETMINUS |
M | ||
* | DEF_IN_SETENUM |
M | ||
* | DEF_IN_KUNION |
where is fresh | M | |
* | DEF_IN_QUNION |
where is fresh | M | |
* | DEF_IN_KINTER |
where is fresh | M | |
* | DEF_IN_QINTER |
where is fresh | M | |
* | DEF_IN_UPTO |
M | ||
* | DISTRI_BUNION_BINTER |
M | ||
* | DISTRI_BINTER_BUNION |
M | ||
DISTRI_BINTER_SETMINUS |
M | |||
DISTRI_SETMINUS_BUNION |
M | |||
* | DERIV_TYPE_SETMINUS_BINTER |
where is a type expression | M | |
* | DERIV_TYPE_SETMINUS_BUNION |
where is a type expression | M | |
* | DERIV_TYPE_SETMINUS_SETMINUS |
where is a type expression | M | |
DISTRI_CPROD_BINTER |
M | |||
DISTRI_CPROD_BUNION |
M | |||
DISTRI_CPROD_SETMINUS |
M | |||
* | DERIV_SUBSETEQ |
where is the type of and | M | |
* | DERIV_EQUAL |
where is the type of and | M | |
* | DERIV_SUBSETEQ_SETMINUS_L |
M | ||
* | DERIV_SUBSETEQ_SETMINUS_R |
M | ||
* | DEF_PARTITION |
AM |