Induction proof: Difference between revisions

From Event-B
Jump to navigationJump to search
imported>Christophe
New page: This page explains how to proove with induction method on the natural number with Rodin tools. In other words, how to proove :<br/> <math> P(0) </math><br/> <math> \forall i.i \in \mathbb{...
 
imported>Christophe
No edit summary
Line 11: Line 11:
</math><br/>
</math><br/>
<math>\forall i. i \in \mathbb{N}  \Rightarrow P(i+1)</math>
<math>\forall i. i \in \mathbb{N}  \Rightarrow P(i+1)</math>
----
The proof key is the following theorem:<br/>
<math>
\forall s.s \subseteq \mathbb{N} \land 0 \in s \land  (\forall n.n \in s => n+1 \in s)\Rightarrow  N \subseteq s

Revision as of 21:06, 13 October 2008

This page explains how to proove with induction method on the natural number with Rodin tools. In other words, how to proove :

P(0)

\forall i.i \in \mathbb{N}\land P(i) \Rightarrow P(i+1)

\vdash
\forall i. i \in \mathbb{N}  \Rightarrow P(i+1)


The proof key is the following theorem:
<math> \forall s.s \subseteq \mathbb{N} \land 0 \in s \land (\forall n.n \in s => n+1 \in s)\Rightarrow N \subseteq s