Inference Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Nicolas m added DISTINCT_CASE |
imported>Laurent m Fixed DIS_SETMINUS_R |
||
Line 88: | Line 88: | ||
{{RRRow}}|*||<font size="-2"> DIS_BINTER_R </font>|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T]) \ \ \ \ \ }</math> || the occurrence of <math>f^{-1}</math> must appear at the "top level". Moreover <math>A</math> and <math>B</math> denote some type. Similar left distribution rules exist || M | {{RRRow}}|*||<font size="-2"> DIS_BINTER_R </font>|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T]) \ \ \ \ \ }</math> || the occurrence of <math>f^{-1}</math> must appear at the "top level". Moreover <math>A</math> and <math>B</math> denote some type. Similar left distribution rules exist || M | ||
{{RRRow}}|*||<font size="-2"> DIS_SETMINUS_R </font>|| <math>\frac{\textbf{H} \;\;\vdash\;\; f \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f | {{RRRow}}|*||<font size="-2"> DIS_SETMINUS_R </font>|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \setminus f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \setminus T]) \ \ \ \ \ }</math> || the occurrence of <math>f</math> must appear at the "top level". Moreover <math>A</math> and <math>B</math> denote some type. Similar left distribution rules exist || M | ||
{{RRRow}}|*||<font size="-2"> SIM_REL_IMAGE_R </font>|| <math>\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \; \textbf{Q}(f[\{ E\} ])} </math> || the occurrence of <math>f</math> must appear at the "top level". A similar left simplification rule exists. || M | {{RRRow}}|*||<font size="-2"> SIM_REL_IMAGE_R </font>|| <math>\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \; \textbf{Q}(f[\{ E\} ])} </math> || the occurrence of <math>f</math> must appear at the "top level". A similar left simplification rule exists. || M |
Revision as of 10:15, 6 July 2009
Conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Inference_Rules
Name | Rule | Side Condition | A/M
| |
---|---|---|---|---|
* | HYP | ![]() |
A
| |
* | HYP_OR | ![]() |
A
| |
* | CNTR | ![]() |
A
| |
* | FALSE_HYP | ![]() |
A
| |
* | TRUE_GOAL | ![]() |
A
| |
* | DBL_HYP | ![]() |
A
| |
* | AND_L | ![]() |
A
| |
* | AND_R | ![]() |
A
| |
* | IMP_L1 | ![]() |
A
| |
* | IMP_R | ![]() |
A
| |
* | IMP_AND_L | ![]() |
A
| |
* | IMP_OR_L | ![]() |
A
| |
* | NEG_IN_L | ![]() |
A
| |
* | NEG_IN_R | ![]() |
A
| |
* | XST_L | ![]() |
A
| |
* | ALL_R | ![]() |
A
| |
* | EQL_LR | ![]() |
![]() ![]() |
A
|
* | EQL_RL | ![]() |
![]() ![]() |
A
|
SUBSET_INTER | ![]() |
the ![]() |
A
| |
IN_INTER | ![]() |
the ![]() |
A
| |
NOTIN_INTER | ![]() |
the ![]() |
A
| |
* | CONTRADICT_L | ![]() |
M
| |
* | CONTRADICT_R | ![]() |
M
| |
* | CASE | ![]() |
M
| |
* | MH | ![]() |
M
| |
* | HM | ![]() |
M
| |
* | EQV | ![]() |
M
| |
* | OV_L | ![]() |
the ![]() |
M
|
* | OV_R | ![]() |
the ![]() |
M
|
* | OV_L | ![]() |
the ![]() |
M
|
* | OV_R | ![]() |
the ![]() |
M
|
* | DIS_BINTER_R | ![]() |
the occurrence of ![]() ![]() ![]() |
M
|
* | DIS_SETMINUS_R | ![]() |
the occurrence of ![]() ![]() ![]() |
M
|
* | SIM_REL_IMAGE_R | ![]() |
the occurrence of ![]() |
M
|
* | SIM_FCOMP_R | ![]() |
the occurrence of ![]() |
M
|
* | FIN_SUBSETEQ_R | ![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_BINTER_R | ![]() |
M
| |
* | FIN_SETMINUS_R | ![]() |
M
| |
* | FIN_REL_R | ![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_REL_IMG_R | ![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_REL_RAN_R | ![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_REL_DOM_R | ![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_FUN1_R | ![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_FUN2_R | ![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_FUN_IMG_R | ![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_FUN_RAN_R | ![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_FUN_DOM_R | ![]() |
the user has to write the set corresponding to ![]() |
M
|
* | LOWER_BOUND_L | ![]() |
![]() |
M
|
* | LOWER_BOUND_R | ![]() |
![]() |
M
|
* | UPPER_BOUND_L | ![]() |
![]() |
M
|
* | UPPER_BOUND_R | ![]() |
![]() |
M
|
* | FIN_LT_0 | ![]() |
M
| |
* | FIN_GE_0 | ![]() |
M
| |
* | CARD_INTERV | ![]() |
![]() |
M
|
* | CARD_EMPTY_INTERV | ![]() |
![]() |
M
|
* | CARD_SUBSETEQ | ![]() |
M
| |
* | FORALL_INST | ![]() |
![]() ![]() |
M
|
* | FORALL_INST_MP | ![]() |
![]() ![]() |
M
|
* | CUT | ![]() |
hypothesis ![]() |
M
|
* | EXISTS_INST | ![]() |
![]() ![]() |
M
|
* | DISTINCT_CASE | ![]() |
case distinction on predicate ![]() |
M |