Inference Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Laurent Added AUTO_MH |
imported>Laurent m Fixed rule names to make them easy to extract |
||
Line 3: | Line 3: | ||
{{RRHeader}} | {{RRHeader}} | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|HYP}}|| <math>\frac{}{\textbf{H},\textbf{P} \;\;\vdash \;\; \textbf{P}} </math>|| || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|HYP_OR}}|| <math>\frac{}{\textbf{H},\textbf{Q} \;\;\vdash \;\; \textbf{P} \lor \ldots \lor \textbf{Q} \lor \ldots \lor \textbf{R}}</math> || || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|CNTR}}|| <math>\frac{}{\textbf{H},\;\textbf{P},\;\neg\,\textbf{P} \;\;\vdash \;\; \textbf{Q}}</math> || || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FALSE_HYP}}|| <math>\frac{}{\textbf{H},\bfalse \;\;\vdash \;\; \textbf{P}}</math> || || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|TRUE_GOAL}}|| <math>\frac{}{\textbf{H} \;\;\vdash \;\; \btrue}</math> || || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FUN_GOAL}}|| <math>\frac{}{\textbf{H},\; f\in \textbf{E}\;\mathit{op}\; \textbf{F} \;\;\vdash\;\; f\in T_1\pfun T_2}</math> || where <math>T_1</math> and <math>T_2</math> denote types and <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DBL_HYP}}|| <math>\frac{\textbf{H},\;\textbf{P} \;\;\vdash \;\; \textbf{Q}}{\textbf{H},\;\textbf{P},\;\textbf{P} \;\;\vdash \;\; \textbf{Q}}</math> || || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|AND_L}}|| <math>\frac{\textbf{H},\textbf{P},\textbf{Q} \; \; \vdash \; \; \textbf{R}}{\textbf{H},\; \textbf{P} \land \textbf{Q} \; \; \vdash \; \; | ||
\textbf{R}}</math> || || A | \textbf{R}}</math> || || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|AND_R}}|| <math>\frac{\textbf{H} \; \; \vdash \; \; \textbf{P} \qquad \textbf{H} \; \; \vdash \; \; \textbf{Q}}{\textbf{H} \; \; \vdash \; \; \textbf{P} \; \land \; \textbf{Q}}</math> || || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|IMP_L1}}|| <math>\frac{\textbf{H},\; \textbf{Q},\; \textbf{P} \land \ldots \land \textbf{R} \limp \textbf{S} \;\;\vdash \;\; \textbf{T}}{\textbf{H},\; \textbf{Q},\; \textbf{P} \land \ldots \land \textbf{Q} \land \ldots \land \textbf{R} \limp \textbf{S} \;\;\vdash \;\; \textbf{T} }</math> || || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|IMP_R}}|| <math>\frac{\textbf{H}, \textbf{P} \;\;\vdash \;\; \textbf{Q}}{\textbf{H} \;\;\vdash \;\; \textbf{P} \limp \textbf{Q}}</math> || || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|IMP_AND_L}}|| <math>\frac{\textbf{H},\textbf{P} \limp \textbf{Q}, \textbf{P} \limp \textbf{R}\;\;\vdash \;\; \textbf{S}}{\textbf{H},\;\textbf{P} \limp \textbf{Q} \land \textbf{R} \;\;\vdash \;\; \textbf{S}}</math> || || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|IMP_OR_L}}|| <math>\frac{ | ||
\textbf{H},\textbf{P} \limp \textbf{R}, \textbf{Q} \limp \textbf{R}\;\;\vdash \;\; \textbf{S} }{\textbf{H},\;\textbf{P} \lor \textbf{Q} \limp \textbf{R} \;\;\vdash \;\; \textbf{S}}</math> || || A | \textbf{H},\textbf{P} \limp \textbf{R}, \textbf{Q} \limp \textbf{R}\;\;\vdash \;\; \textbf{S} }{\textbf{H},\;\textbf{P} \lor \textbf{Q} \limp \textbf{R} \;\;\vdash \;\; \textbf{S}}</math> || || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|AUTO_MH}}|| <math>\frac{ | ||
\textbf{H},\textbf{P},\;\textbf{Q}\limp \textbf{R}\;\;\vdash \;\; \textbf{S} }{\textbf{H},\;\textbf{P},\; \textbf{P} \land \textbf{Q} \limp \textbf{R} \;\;\vdash \;\; \textbf{S}}</math> || || A | \textbf{H},\textbf{P},\;\textbf{Q}\limp \textbf{R}\;\;\vdash \;\; \textbf{S} }{\textbf{H},\;\textbf{P},\; \textbf{P} \land \textbf{Q} \limp \textbf{R} \;\;\vdash \;\; \textbf{S}}</math> || || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|NEG_IN_L}}|| <math>\frac{\textbf{H},\; E \in \{ a,\ldots , c\} \; \; \vdash \; \; \; \; \textbf{P} }{\textbf{H},\; E \in \{ a,\ldots , b, \ldots , c\} , \neg \, (E=b) \; \; \vdash \; \; \textbf{P} }</math> || || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|NEG_IN_R}}|| <math>\frac{\textbf{H},\; E \in \{ a,\ldots , c\} \; \; \vdash \; \; \; \; \textbf{P} }{\textbf{H},\; E \in \{ a,\ldots , b, \ldots , c\} , \neg \, (b=E) \; \; \vdash \; \; \textbf{P} }</math> || || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|XST_L}}|| <math>\frac{\textbf{H},\; \textbf{P(x)} \; \; \vdash \; \; \textbf{Q} | ||
}{ | }{ | ||
\textbf{H},\; \exists \, \textbf{x}\, \qdot\, \textbf{P(x)} \; \; \vdash \; \; \textbf{Q} | \textbf{H},\; \exists \, \textbf{x}\, \qdot\, \textbf{P(x)} \; \; \vdash \; \; \textbf{Q} | ||
}</math> || || A | }</math> || || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|ALL_R}}|| <math>\frac{\textbf{H}\; \; \vdash \; \; \textbf{P(x)} }{ \textbf{H} \; \; \vdash \; \; \forall \textbf{x}\, \qdot\, \textbf{P(x)} }</math> || || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|EQL_LR}}|| <math>\frac{\textbf{H(E)} \; \; \vdash \; \; \; \; \textbf{P(E)} }{\textbf{H(x)},\; x=E \; \; \vdash \; \; \textbf{P(x)} }</math> || <math>x</math> is a variable which is not free in <math>E</math> || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|EQL_RL}}|| <math>\frac{\textbf{H(E)} \; \; \vdash \; \; \; \; \textbf{P(E)} }{\textbf{H(x)},\; E=x \; \; \vdash \; \; \textbf{P(x)} }</math> || <math>x</math> is a variable which is not free in <math>E</math> || A | ||
{{RRRow}}| || | {{RRRow}}| ||{{Rulename|SUBSET_INTER}}|| <math>\frac{\textbf{H},\;\textbf{T} \subseteq \textbf{U} \;\;\vdash \;\; | ||
\textbf{G}(\textbf{S} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{V})} | \textbf{G}(\textbf{S} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{V})} | ||
{\textbf{H},\;\textbf{T} \subseteq \textbf{U} \;\;\vdash \;\; | {\textbf{H},\;\textbf{T} \subseteq \textbf{U} \;\;\vdash \;\; | ||
\textbf{G}(\textbf{S} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U} \binter \dots \binter \textbf{V})}</math> || the <math>\binter</math> operator must appear at the "top level" || A | \textbf{G}(\textbf{S} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U} \binter \dots \binter \textbf{V})}</math> || the <math>\binter</math> operator must appear at the "top level" || A | ||
{{RRRow}}| || | {{RRRow}}| ||{{Rulename|IN_INTER}}|| <math>\frac{\textbf{H},\;\textbf{E} \in \textbf{T} \;\;\vdash \;\; | ||
\textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{U})} | \textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{U})} | ||
{\textbf{H},\;\textbf{E} \in \textbf{T} \;\;\vdash \;\; | {\textbf{H},\;\textbf{E} \in \textbf{T} \;\;\vdash \;\; | ||
\textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U})}</math> || the <math>\binter</math> operator must appear at the "top level" || A | \textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U})}</math> || the <math>\binter</math> operator must appear at the "top level" || A | ||
{{RRRow}}| || | {{RRRow}}| ||{{Rulename|NOTIN_INTER}}|| <math>\frac{\textbf{H},\;\lnot\;\textbf{E} \in \textbf{T} \;\;\vdash \;\; | ||
\textbf{G}(\emptyset)} | \textbf{G}(\emptyset)} | ||
{\textbf{H},\;\lnot\;\textbf{E} \in \textbf{T} \;\;\vdash \;\; | {\textbf{H},\;\lnot\;\textbf{E} \in \textbf{T} \;\;\vdash \;\; | ||
\textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U})}</math> || the <math>\binter</math> operator must appear at the "top level" || A | \textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U})}</math> || the <math>\binter</math> operator must appear at the "top level" || A | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|CONTRADICT_L}}|| <math>\frac{\textbf{H},\;\neg\,\textbf{Q} \;\;\vdash \;\; \neg\,\textbf{P}}{\textbf{H},\;\textbf{P} \;\;\vdash \;\; \textbf{Q}}</math> || || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|CONTRADICT_R}}|| <math>\frac{\textbf{H},\;\neg\,\textbf{Q} \;\;\vdash \;\; \bfalse}{\textbf{H} \;\;\vdash \;\; \textbf{Q}}</math> || || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|CASE}}|| <math>\frac{\textbf{H}, \; \textbf{P} \; \; \vdash \; \; \textbf{R} \ \ \ \ \ldots \ \ \ \ \textbf{H}, \; \textbf{Q} \; \; \vdash \; \; \textbf{R} }{\textbf{H},\; \textbf{P} \lor \ldots \lor \textbf{Q} \; \; \vdash \; \; \textbf{R} }</math> || || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|MH}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;\textbf{P} \qquad \textbf{H},\;\textbf{P},\; \textbf{Q} \;\;\vdash \;\; \textbf{R} }{\textbf{H},\;\textbf{P} \limp \textbf{Q} \;\;\vdash \;\; \textbf{R} \ \ \ \ \ }</math> || || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|HM}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;\neg\,\textbf{Q} \qquad \textbf{H},\;\neg\,\textbf{Q},\; \neg\,\textbf{P} \;\;\vdash \;\; \textbf{R} }{\textbf{H},\;\textbf{P} \limp \textbf{Q} \;\;\vdash \;\; \textbf{R} \ \ \ \ \ }</math> || || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|EQV}}|| <math>\frac{\textbf{H(Q)}, \textbf{P} \leqv \textbf{Q} | ||
\;\;\vdash\;\; \textbf{G(Q)}}{\textbf{H(P)},\;\textbf{P} \leqv \textbf{Q} | \;\;\vdash\;\; \textbf{G(Q)}}{\textbf{H(P)},\;\textbf{P} \leqv \textbf{Q} | ||
\;\;\vdash \;\; \textbf{G(P)} \ \ \ \ \ }</math> || || M | \;\;\vdash \;\; \textbf{G(P)} \ \ \ \ \ }</math> || || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|OV_L}}|| <math>\frac{\textbf{H},\; G=E | ||
,\;\textbf{P}(F)\;\;\vdash\;\;\textbf{Q} \qquad \textbf{H},\; \neg\,(G=E) | ,\;\textbf{P}(F)\;\;\vdash\;\;\textbf{Q} \qquad \textbf{H},\; \neg\,(G=E) | ||
,\;\textbf{P}(f(G))\;\;\vdash\;\;\textbf{Q}}{\textbf{H},\;\textbf{P}((f\ovl\{E | ,\;\textbf{P}(f(G))\;\;\vdash\;\;\textbf{Q}}{\textbf{H},\;\textbf{P}((f\ovl\{E | ||
\mapsto F\})(G)) \;\;\vdash \;\; \textbf{Q}}</math> || the <math>\ovl</math> operator must appear at the "top level" || M | \mapsto F\})(G)) \;\;\vdash \;\; \textbf{Q}}</math> || the <math>\ovl</math> operator must appear at the "top level" || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|OV_R}}|| <math>\frac{\textbf{H},\; G=E \;\;\vdash\;\;\textbf{Q}(F) | ||
\qquad \textbf{H},\; \neg\,(G=E) \;\;\vdash\;\;\textbf{Q}(f(G))}{\textbf{H} | \qquad \textbf{H},\; \neg\,(G=E) \;\;\vdash\;\;\textbf{Q}(f(G))}{\textbf{H} | ||
\;\;\vdash \;\; \textbf{Q}((f\ovl\{E \mapsto F\})(G)) \ \ \ \ \ }</math> || the <math>\ovl</math> operator must appear at the "top level" || M | \;\;\vdash \;\; \textbf{Q}((f\ovl\{E \mapsto F\})(G)) \ \ \ \ \ }</math> || the <math>\ovl</math> operator must appear at the "top level" || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|OV_L}}|| <math>\frac{\textbf{H},\; G \in \dom(g) ,\;\textbf{P}(g(G))\;\;\vdash\;\;\textbf{Q} \qquad \textbf{H},\; \neg\,G \in \dom(g) ,\;\textbf{P}(f(G))\;\;\vdash\;\;\textbf{Q}}{\textbf{H},\;\textbf{P}((f\ovl g)(G)) \;\;\vdash \;\; \textbf{Q} \ \ \ \ \ }</math> || the <math>\ovl</math> operator must appear at the "top level" || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|OV_R}}|| <math>\frac{\textbf{H},\; G \in \dom(g) \;\;\vdash\;\;\textbf{Q}(g(G)) \qquad \textbf{H},\; \neg\, G \in \dom(g) \;\;\vdash\;\;\textbf{Q}(f(G))}{\textbf{H} \;\;\vdash \;\; \textbf{Q}((f\ovl g)(G)) \ \ \ \ \ }</math> || the <math>\ovl</math> operator must appear at the "top level" || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DIS_BINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T]) \ \ \ \ \ }</math> || the occurrence of <math>f</math> must appear at the "top level". Moreover <math>A</math> and <math>B</math> denote some type. Similar left distribution rules exist || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DIS_SETMINUS_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \setminus f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \setminus T]) \ \ \ \ \ }</math> || the occurrence of <math>f</math> must appear at the "top level". Moreover <math>A</math> and <math>B</math> denote some type. Similar left distribution rules exist || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|SIM_REL_IMAGE_R}}|| <math>\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \; \textbf{Q}(f[\{ E\} ])} </math> || the occurrence of <math>f</math> must appear at the "top level". A similar left simplification rule exists. || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|SIM_FCOMP_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(\textbf{Q}(g(f(x)))) \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(g(f(x))) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}((f \fcomp g)(x)) \ \ \ \ \ }</math> || the occurrence of <math>f \fcomp g</math> must appear at the "top level". A similar left simplification rule exists. || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FIN_SUBSETEQ_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; S \subseteq T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(T)}{\textbf{H} \;\;\vdash \;\; \finite\,(S) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FIN_BINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash | ||
\;\;\finite\,(S) \;\lor\;\ldots \;\lor\; \finite\,(T)}{\textbf{H} \;\;\vdash | \;\;\finite\,(S) \;\lor\;\ldots \;\lor\; \finite\,(T)}{\textbf{H} \;\;\vdash | ||
\;\; \finite\,(S \;\binter\;\ldots \;\binter\; T)}</math> || || M | \;\; \finite\,(S \;\binter\;\ldots \;\binter\; T)}</math> || || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FIN_SETMINUS_R}}|| <math>\frac{\textbf{H} \;\;\vdash | ||
\;\;\finite\,(S)}{\textbf{H} \;\;\vdash \;\; \finite\,(S \;\setminus\; T) \ \ \ \ \ \ \ }</math> || || M | \;\;\finite\,(S)}{\textbf{H} \;\;\vdash \;\; \finite\,(S \;\setminus\; T) \ \ \ \ \ \ \ }</math> || || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FIN_REL_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; r \;\in\; S \rel T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) \qquad \textbf{H} \;\;\vdash \;\; \finite\,(T)}{\textbf{H} \;\;\vdash \;\; \finite\,(r)}</math> || the user has to write the set corresponding to <math>S \rel T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FIN_REL_IMG_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(r[s]) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FIN_REL_RAN_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(\ran(r)) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FIN_REL_DOM_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(\dom(r)) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FIN_FUN1_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) }{\textbf{H} \;\;\vdash \;\; \finite\,(f) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FIN_FUN2_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; f^{-1} \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) }{\textbf{H} \;\;\vdash \;\; \finite\,(f) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FIN_FUN_IMG_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(s) }{\textbf{H} \;\;\vdash \;\; \finite\,(f[s]) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FIN_FUN_RAN_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) }{\textbf{H} \;\;\vdash \;\; \finite\,(\ran(f)) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FIN_FUN_DOM_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; f^{-1} \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) }{\textbf{H} \;\;\vdash \;\; \finite\,(\dom(f)) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|LOWER_BOUND_L}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite(S) }{\textbf{H} \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; n \leq x)}</math> || <math>S</math> must not contain any bound variable || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|LOWER_BOUND_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite(S) }{\textbf{H} \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; x \geq n)}</math> || <math>S</math> must not contain any bound variable || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|UPPER_BOUND_L}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite(S) }{\textbf{H} \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; n \geq x)}</math> || <math>S</math> must not contain any bound variable || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|UPPER_BOUND_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite(S) }{\textbf{H} \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; x \leq n)}</math> || <math>S</math> must not contain any bound variable || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FIN_LT_0}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; n \leq x) \qquad \textbf{H} \;\;\vdash \;\; S \subseteq \intg \setminus \natn }{\textbf{H} \;\;\vdash \;\; \finite(S)}</math> || || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FIN_GE_0}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; x \leq n) \qquad \textbf{H} \;\;\vdash \;\; S \subseteq \nat }{\textbf{H} \;\;\vdash \;\; \finite(S)}</math> || || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|CARD_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b \;\;\vdash \;\; \textbf{Q}(b-a+1) \qquad \textbf{H},\, b < a \;\;\vdash \;\; \textbf{Q}(0) }{\textbf{H} \;\;\vdash\;\; \textbf{Q}(\card\,(a\upto b))}</math> || <math>\card (a \upto b)</math> must appear at "top-level" || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|CARD_EMPTY_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b,\,\textbf{P}(a-b+1) \;\;\vdash \;\; \textbf{Q} \qquad \textbf{H},\, b < a ,\, \textbf{P}(0)\;\;\vdash \;\; \textbf{Q} }{\textbf{H},\,\textbf{P}(\card\,(a\upto b)) \;\;\vdash\;\; \textbf{Q}}</math> || <math>\card (a \upto b)</math> must appear at "top-level" || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|CARD_SUBSETEQ}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \textbf{P}(S \subseteq T) }{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card\,(S) \leq \card(T))}</math> || || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FORALL_INST}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|FORALL_INST_MP}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H}, {WD}(E) \;\;\vdash \;\; [x \bcmeq E]\textbf{P} \qquad \textbf{H}, {WD}(E), [x \bcmeq E]\textbf{Q} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \limp \textbf{Q} \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> and a Modus Ponens is applied|| M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|CUT}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(\textbf{P}) \qquad \textbf{H}, {WD}(\textbf{P}) \;\;\vdash \;\; \textbf{\textbf{P}} \qquad \textbf{H}, {WD}(\textbf{P}), \textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H} \;\;\vdash\;\; \textbf{G}}</math> || hypothesis <math>\textbf{P}</math> is added || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|EXISTS_INST}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \exists x \qdot \textbf{P} \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTINCT_CASE}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(\textbf{P}) \qquad \textbf{H}, {WD}(\textbf{P}), \textbf{P} \;\;\vdash \;\; \textbf{\textbf{G}} \qquad \textbf{H}, {WD}(\textbf{P}), \lnot \textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H} \;\;\vdash\;\; \textbf{G}}</math> || case distinction on predicate <math>\textbf{P}</math> || M | ||
|} | |} |
Revision as of 10:25, 8 July 2009
Conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Inference_Rules
Name | Rule | Side Condition | A/M
| |
---|---|---|---|---|
* | HYP |
A
| ||
* | HYP_OR |
A
| ||
* | CNTR |
A
| ||
* | FALSE_HYP |
A
| ||
* | TRUE_GOAL |
A
| ||
* | FUN_GOAL |
where and denote types and is one of , , , , , , . | A
| |
* | DBL_HYP |
A
| ||
* | AND_L |
A
| ||
* | AND_R |
A
| ||
* | IMP_L1 |
A
| ||
* | IMP_R |
A
| ||
* | IMP_AND_L |
A
| ||
* | IMP_OR_L |
A
| ||
* | AUTO_MH |
A
| ||
* | NEG_IN_L |
A
| ||
* | NEG_IN_R |
A
| ||
* | XST_L |
A
| ||
* | ALL_R |
A
| ||
* | EQL_LR |
is a variable which is not free in | A
| |
* | EQL_RL |
is a variable which is not free in | A
| |
SUBSET_INTER |
the operator must appear at the "top level" | A
| ||
IN_INTER |
the operator must appear at the "top level" | A
| ||
NOTIN_INTER |
the operator must appear at the "top level" | A
| ||
* | CONTRADICT_L |
M
| ||
* | CONTRADICT_R |
M
| ||
* | CASE |
M
| ||
* | MH |
M
| ||
* | HM |
M
| ||
* | EQV |
M
| ||
* | OV_L |
the operator must appear at the "top level" | M
| |
* | OV_R |
the operator must appear at the "top level" | M
| |
* | OV_L |
the operator must appear at the "top level" | M
| |
* | OV_R |
the operator must appear at the "top level" | M
| |
* | DIS_BINTER_R |
the occurrence of must appear at the "top level". Moreover and denote some type. Similar left distribution rules exist | M
| |
* | DIS_SETMINUS_R |
the occurrence of must appear at the "top level". Moreover and denote some type. Similar left distribution rules exist | M
| |
* | SIM_REL_IMAGE_R |
the occurrence of must appear at the "top level". A similar left simplification rule exists. | M
| |
* | SIM_FCOMP_R |
the occurrence of must appear at the "top level". A similar left simplification rule exists. | M
| |
* | FIN_SUBSETEQ_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_BINTER_R |
M
| ||
* | FIN_SETMINUS_R |
M
| ||
* | FIN_REL_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_REL_IMG_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_REL_RAN_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_REL_DOM_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_FUN1_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_FUN2_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_FUN_IMG_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_FUN_RAN_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_FUN_DOM_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | LOWER_BOUND_L |
must not contain any bound variable | M
| |
* | LOWER_BOUND_R |
must not contain any bound variable | M
| |
* | UPPER_BOUND_L |
must not contain any bound variable | M
| |
* | UPPER_BOUND_R |
must not contain any bound variable | M
| |
* | FIN_LT_0 |
M
| ||
* | FIN_GE_0 |
M
| ||
* | CARD_INTERV |
must appear at "top-level" | M
| |
* | CARD_EMPTY_INTERV |
must appear at "top-level" | M
| |
* | CARD_SUBSETEQ |
M
| ||
* | FORALL_INST |
is instantiated with | M
| |
* | FORALL_INST_MP |
is instantiated with and a Modus Ponens is applied | M
| |
* | CUT |
hypothesis is added | M
| |
* | EXISTS_INST |
is instantiated with | M
| |
* | DISTINCT_CASE |
case distinction on predicate | M |