Inference Rules: Difference between revisions
From Event-B
				
				
				Jump to navigationJump to search
				
				
| imported>Nicolas m added ONE_POINT_L | imported>Nicolas m Added comment for one point rule with 'exists' quantifier | ||
| Line 154: | Line 154: | ||
| {{RRRow}}|*||{{Rulename|DISTINCT_CASE}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(\textbf{P}) \qquad  \textbf{H}, {WD}(\textbf{P}), \textbf{P} \;\;\vdash \;\; \textbf{\textbf{G}} \qquad  \textbf{H}, {WD}(\textbf{P}), \lnot \textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H} \;\;\vdash\;\; \textbf{G}}</math> || case distinction on predicate <math>\textbf{P}</math> || M | {{RRRow}}|*||{{Rulename|DISTINCT_CASE}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(\textbf{P}) \qquad  \textbf{H}, {WD}(\textbf{P}), \textbf{P} \;\;\vdash \;\; \textbf{\textbf{G}} \qquad  \textbf{H}, {WD}(\textbf{P}), \lnot \textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H} \;\;\vdash\;\; \textbf{G}}</math> || case distinction on predicate <math>\textbf{P}</math> || M | ||
| {{RRRow}}| ||{{Rulename|ONE_POINT_L}}||<math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H}, \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} \;\;\vdash \;\; \textbf{G}}{ \textbf{H}, \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R}  \;\;\vdash\;\; \textbf{G}}</math>||  | {{RRRow}}| ||{{Rulename|ONE_POINT_L}}||<math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H}, \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} \;\;\vdash \;\; \textbf{G}}{ \textbf{H}, \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R}  \;\;\vdash\;\; \textbf{G}}</math>|| The rule can be applied with <math>\forall</math> as well as with <math>\exists</math> ||  A | ||
| {{RRRow}}| ||{{Rulename|ONE_POINT_R}}||<math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H} \;\;\vdash \;\; \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} }{ \textbf{H}  \;\;\vdash\;\; \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} }</math>||  | {{RRRow}}| ||{{Rulename|ONE_POINT_R}}||<math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H} \;\;\vdash \;\; \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} }{ \textbf{H}  \;\;\vdash\;\; \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} }</math>|| The rule can be applied with <math>\forall</math> as well as with <math>\exists</math> ||  A | ||
| |} | |} | ||
Revision as of 09:00, 15 July 2009
Conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Inference_Rules
| Name | Rule | Side Condition | A/M 
 | |
|---|---|---|---|---|
| * | HYP |  | A 
 | |
| * | HYP_OR |  | A 
 | |
| * | CNTR |  | A 
 | |
| * | FALSE_HYP |  | A 
 | |
| * | TRUE_GOAL |  | A 
 | |
| * | FUN_GOAL |  | where  and  denote types and  is one of  ,  ,  ,  ,  ,  ,  . | A 
 | 
| * | DBL_HYP |  | A 
 | |
| * | AND_L |  | A 
 | |
| * | AND_R |  | A 
 | |
| * | IMP_L1 |  | A 
 | |
| * | IMP_R |  | A 
 | |
| * | IMP_AND_L |  | A 
 | |
| * | IMP_OR_L |  | A 
 | |
| * | AUTO_MH |  | A 
 | |
| * | NEG_IN_L |  | A 
 | |
| * | NEG_IN_R |  | A 
 | |
| * | XST_L |  | A 
 | |
| * | ALL_R |  | A 
 | |
| * | EQL_LR |  |  is a variable which is not free in  | A 
 | 
| * | EQL_RL |  |  is a variable which is not free in  | A 
 | 
| SUBSET_INTER |  | the  operator must appear at the "top level" | A 
 | |
| IN_INTER |  | the  operator must appear at the "top level" | A 
 | |
| NOTIN_INTER |  | the  operator must appear at the "top level" | A 
 | |
| * | CONTRADICT_L |  | M 
 | |
| * | CONTRADICT_R |  | M 
 | |
| * | CASE |  | M 
 | |
| * | MH |  | M 
 | |
| * | HM |  | M 
 | |
| * | EQV |  | M 
 | |
| * | OV_L |  | the  operator must appear at the "top level" | M 
 | 
| * | OV_R |  | the  operator must appear at the "top level" | M 
 | 
| * | OV_L |  | the  operator must appear at the "top level" | M 
 | 
| * | OV_R |  | the  operator must appear at the "top level" | M 
 | 
| * | DIS_BINTER_R | ![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T]) \ \ \ \ \ }](/images/math/5/3/8/538882eb3fc5acd65e54da755e9513ae.png) | the occurrence of  must appear at the "top level". Moreover  and  denote some type. Similar left distribution rules exist | M 
 | 
| * | DIS_SETMINUS_R | ![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \setminus f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \setminus T]) \ \ \ \ \ }](/images/math/8/8/a/88a3101cc210b88d5fe59746292f12fe.png) | the occurrence of  must appear at the "top level". Moreover  and  denote some type. Similar left distribution rules exist | M 
 | 
| * | SIM_REL_IMAGE_R | ![\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \;  \textbf{Q}(f[\{ E\} ])}](/images/math/7/d/f/7dfac56e8c4269e247b888bd790b211d.png) | the occurrence of  must appear at the "top level". A similar left simplification rule exists. | M 
 | 
| * | SIM_FCOMP_R |  | the occurrence of  must appear at the "top level". A similar left simplification rule exists. | M 
 | 
| * | FIN_SUBSETEQ_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_BINTER_R |  | M 
 | |
| * | FIN_SETMINUS_R |  | M 
 | |
| * | FIN_REL_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_REL_IMG_R | ![\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(r[s]) \ \ \ \ \ \ \ }](/images/math/7/d/1/7d1b728949ca9ee920276cc4d7b89997.png) | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_REL_RAN_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_REL_DOM_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_FUN1_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_FUN2_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_FUN_IMG_R | ![\frac{\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(s) }{\textbf{H} \;\;\vdash \;\; \finite\,(f[s]) \ \ \ \ \ \ \ }](/images/math/c/1/3/c13b905d1407ea16b0e2c7c7e2d3309b.png) | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_FUN_RAN_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_FUN_DOM_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | LOWER_BOUND_L |  |  must not contain any bound variable | M 
 | 
| * | LOWER_BOUND_R |  |  must not contain any bound variable | M 
 | 
| * | UPPER_BOUND_L |  |  must not contain any bound variable | M 
 | 
| * | UPPER_BOUND_R |  |  must not contain any bound variable | M 
 | 
| * | FIN_LT_0 |  | M 
 | |
| * | FIN_GE_0 |  | M 
 | |
| * | CARD_INTERV |  |  must appear at "top-level" | M 
 | 
| * | CARD_EMPTY_INTERV |  |  must appear at "top-level" | M 
 | 
| * | CARD_SUBSETEQ |  | M 
 | |
| * | FORALL_INST | ![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P}  \;\;\vdash\;\; \textbf{G}}](/images/math/a/c/b/acb596a712a0f720a7d3238f967ccfe6.png) |  is instantiated with  | M 
 | 
| * | FORALL_INST_MP | ![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H}, {WD}(E) \;\;\vdash \;\; [x \bcmeq E]\textbf{P} \qquad  \textbf{H}, {WD}(E), [x \bcmeq E]\textbf{Q} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \limp \textbf{Q}  \;\;\vdash\;\; \textbf{G}}](/images/math/e/2/5/e25e646ecaceca4cb4143a3e66dbb185.png) |  is instantiated with  and a Modus Ponens is applied | M 
 | 
| * | CUT |  | hypothesis  is added | M 
 | 
| * | EXISTS_INST | ![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \exists x \qdot \textbf{P}  \;\;\vdash\;\; \textbf{G}}](/images/math/a/3/a/a3af36c01f37d2d738cde14ec1be4e20.png) |  is instantiated with  | M 
 | 
| * | DISTINCT_CASE |  | case distinction on predicate  | M 
 | 
| ONE_POINT_L | ![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H}, \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} \;\;\vdash \;\; \textbf{G}}{ \textbf{H}, \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R}  \;\;\vdash\;\; \textbf{G}}](/images/math/8/b/1/8b19ec24619d8d756596ebe54616be06.png) | The rule can be applied with  as well as with  | A 
 | |
| ONE_POINT_R | ![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H} \;\;\vdash \;\; \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} }{ \textbf{H}  \;\;\vdash\;\; \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} }](/images/math/3/7/9/379ac43eaae96f14177427e9cbc89387.png) | The rule can be applied with  as well as with  | A | 
