Inference Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Nicolas |
imported>Laurent Fixed broken rules (ill-defined, ill-typed or plain wrong) |
||
| Line 1: | Line 1: | ||
Conventions used in these tables are described in [[The_Proving_Perspective_%28Rodin_User_Manual%29#Inference_Rules]] | Conventions used in these tables are described in [[The_Proving_Perspective_%28Rodin_User_Manual%29#Inference_Rules]]. | ||
Rules that are marked with a <tt>b</tt> in the first column are currently broken in Rodin 1.1 (see [http://sourceforge.net/tracker/?func=detail&aid=2895507&group_id=108850&atid=651669 bug 2895507]). | |||
{{RRHeader}} | {{RRHeader}} | ||
| Line 78: | Line 80: | ||
{{RRRow}}|*||{{Rulename|CASE}}|| <math>\frac{\textbf{H}, \; \textbf{P} \; \; \vdash \; \; \textbf{R} \ \ \ \ \ldots \ \ \ \ \textbf{H}, \; \textbf{Q} \; \; \vdash \; \; \textbf{R} }{\textbf{H},\; \textbf{P} \lor \ldots \lor \textbf{Q} \; \; \vdash \; \; \textbf{R} }</math> || || M | {{RRRow}}|*||{{Rulename|CASE}}|| <math>\frac{\textbf{H}, \; \textbf{P} \; \; \vdash \; \; \textbf{R} \ \ \ \ \ldots \ \ \ \ \textbf{H}, \; \textbf{Q} \; \; \vdash \; \; \textbf{R} }{\textbf{H},\; \textbf{P} \lor \ldots \lor \textbf{Q} \; \; \vdash \; \; \textbf{R} }</math> || || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|MH}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;\textbf{P} \qquad \textbf{H},\; \textbf{Q} \;\;\vdash \;\; \textbf{R} }{\textbf{H},\;\textbf{P} \limp \textbf{Q} \;\;\vdash \;\; \textbf{R} \ \ \ \ \ }</math> || || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|HM}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;\neg\,\textbf{Q} \qquad \textbf{H},\; \neg\,\textbf{P} \;\;\vdash \;\; \textbf{R} }{\textbf{H},\;\textbf{P} \limp \textbf{Q} \;\;\vdash \;\; \textbf{R} \ \ \ \ \ }</math> || || M | ||
{{RRRow}}|*||{{Rulename|EQV}}|| <math>\frac{\textbf{H(Q)}, \textbf{P} \leqv \textbf{Q} | {{RRRow}}|*||{{Rulename|EQV}}|| <math>\frac{\textbf{H(Q)}, \textbf{P} \leqv \textbf{Q} | ||
| Line 115: | Line 117: | ||
{{RRRow}}|*||{{Rulename|SIM_FCOMP_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(\textbf{Q}(g(f(x)))) \qquad\textbf{H},\; \textbf{Q}(g(f(x))) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}((f \fcomp g)(x)) \;\;\vdash \;\; \textbf{G} \ \ \ \ \ }</math> || the occurrence of <math>f \fcomp g</math> must appear at the "top level". || M | {{RRRow}}|*||{{Rulename|SIM_FCOMP_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(\textbf{Q}(g(f(x)))) \qquad\textbf{H},\; \textbf{Q}(g(f(x))) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}((f \fcomp g)(x)) \;\;\vdash \;\; \textbf{G} \ \ \ \ \ }</math> || the occurrence of <math>f \fcomp g</math> must appear at the "top level". || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|FIN_SUBSETEQ_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(T) \qquad\textbf{H} \;\;\vdash \;\; S \subseteq T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(T)}{\textbf{H} \;\;\vdash \;\; \finite\,(S) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}|*||{{Rulename|FIN_BINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash | {{RRRow}}|*||{{Rulename|FIN_BINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash | ||
| Line 124: | Line 126: | ||
\;\;\finite\,(S)}{\textbf{H} \;\;\vdash \;\; \finite\,(S \;\setminus\; T) \ \ \ \ \ \ \ }</math> || || M | \;\;\finite\,(S)}{\textbf{H} \;\;\vdash \;\; \finite\,(S \;\setminus\; T) \ \ \ \ \ \ \ }</math> || || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|FIN_REL_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\rel T) \qquad\textbf{H} \;\;\vdash \;\; r \;\in\; S \rel T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) \qquad \textbf{H} \;\;\vdash \;\; \finite\,(T)}{\textbf{H} \;\;\vdash \;\; \finite\,(r)}</math> || the user has to write the set corresponding to <math>S \rel T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}|*||{{Rulename|FIN_REL_IMG_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(r[s]) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | {{RRRow}}|*||{{Rulename|FIN_REL_IMG_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(r[s]) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
| Line 132: | Line 134: | ||
{{RRRow}}|*||{{Rulename|FIN_REL_DOM_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(\dom(r)) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | {{RRRow}}|*||{{Rulename|FIN_REL_DOM_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(\dom(r)) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|FIN_FUN1_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) }{\textbf{H} \;\;\vdash \;\; \finite\,(f) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|FIN_FUN2_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f^{-1} \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) }{\textbf{H} \;\;\vdash \;\; \finite\,(f) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|FIN_FUN_IMG_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(s) }{\textbf{H} \;\;\vdash \;\; \finite\,(f[s]) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|FIN_FUN_RAN_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) }{\textbf{H} \;\;\vdash \;\; \finite\,(\ran(f)) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|FIN_FUN_DOM_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f^{-1} \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) }{\textbf{H} \;\;\vdash \;\; \finite\,(\dom(f)) \ \ \ \ \ \ \ }</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | ||
{{RRRow}}|*||{{Rulename|LOWER_BOUND_L}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite(S) }{\textbf{H} \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; n \leq x)}</math> || <math>S</math> must not contain any bound variable || M | {{RRRow}}|*||{{Rulename|LOWER_BOUND_L}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite(S) }{\textbf{H} \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; n \leq x)}</math> || <math>S</math> must not contain any bound variable || M | ||
| Line 156: | Line 158: | ||
{{RRRow}}|*||{{Rulename|CARD_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b \;\;\vdash \;\; \textbf{Q}(b-a+1) \qquad \textbf{H},\, b < a \;\;\vdash \;\; \textbf{Q}(0) }{\textbf{H} \;\;\vdash\;\; \textbf{Q}(\card\,(a\upto b))}</math> || <math>\card (a \upto b)</math> must appear at "top-level" || M | {{RRRow}}|*||{{Rulename|CARD_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b \;\;\vdash \;\; \textbf{Q}(b-a+1) \qquad \textbf{H},\, b < a \;\;\vdash \;\; \textbf{Q}(0) }{\textbf{H} \;\;\vdash\;\; \textbf{Q}(\card\,(a\upto b))}</math> || <math>\card (a \upto b)</math> must appear at "top-level" || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|CARD_EMPTY_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b,\,\textbf{P}(b-a+1) \;\;\vdash \;\; \textbf{Q} \qquad \textbf{H},\, b < a ,\, \textbf{P}(0)\;\;\vdash \;\; \textbf{Q} }{\textbf{H},\,\textbf{P}(\card\,(a\upto b)) \;\;\vdash\;\; \textbf{Q}}</math> || <math>\card (a \upto b)</math> must appear at "top-level" || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|CARD_SUBSETEQ}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \textbf{P}(S \subseteq T) }{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card\,(S) \leq \card(T))}</math> || <math>S</math> and <math>T</math> bear the same type || M | ||
{{RRRow}}|*||{{Rulename|FORALL_INST}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> || M | {{RRRow}}|*||{{Rulename|FORALL_INST}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> || M | ||
Revision as of 11:07, 11 November 2009
Conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Inference_Rules.
Rules that are marked with a b in the first column are currently broken in Rodin 1.1 (see bug 2895507).
| Name | Rule | Side Condition | A/M
| |
|---|---|---|---|---|
| * | HYP |
![]() |
A
| |
| * | HYP_OR |
![]() |
A
| |
| * | CNTR |
![]() |
A
| |
| * | FALSE_HYP |
![]() |
A
| |
| * | TRUE_GOAL |
![]() |
A
| |
| * | FUN_GOAL |
![]() |
where and denote types and is one of , , , , , , . |
A
|
| * | DBL_HYP |
![]() |
A
| |
| * | AND_L |
![]() |
A
| |
| * | AND_R |
![]() |
A
| |
| * | IMP_L1 |
![]() |
A
| |
| * | IMP_R |
![]() |
A
| |
| * | IMP_AND_L |
![]() |
A
| |
| * | IMP_OR_L |
![]() |
A
| |
| * | AUTO_MH |
![]() |
A
| |
| * | NEG_IN_L |
![]() |
A
| |
| * | NEG_IN_R |
![]() |
A
| |
| * | XST_L |
![]() |
A
| |
| * | ALL_R |
![]() |
A
| |
| * | EQL_LR |
![]() |
is a variable which is not free in ![]() |
A
|
| * | EQL_RL |
![]() |
is a variable which is not free in ![]() |
A
|
SUBSET_INTER |
![]() |
the operator must appear at the "top level" |
A
| |
IN_INTER |
![]() |
the operator must appear at the "top level" |
A
| |
NOTIN_INTER |
![]() |
the operator must appear at the "top level" |
A
| |
| * | FIN_L_LOWER_BOUND_L |
![]() |
The goal is discharged | A
|
| * | FIN_L_LOWER_BOUND_R |
![]() |
The goal is discharged | A
|
| * | FIN_L_UPPER_BOUND_L |
![]() |
The goal is discharged | A
|
| * | FIN_L_UPPER_BOUND_R |
![]() |
The goal is discharged | A
|
| * | CONTRADICT_L |
![]() |
M
| |
| * | CONTRADICT_R |
![]() |
M
| |
| * | CASE |
![]() |
M
| |
| b | MH |
![]() |
M
| |
| b | HM |
![]() |
M
| |
| * | EQV |
![]() |
M
| |
| * | OV_L |
![]() |
the operator must appear at the "top level" |
M
|
| * | OV_R |
![]() |
the operator must appear at the "top level" |
M
|
| * | OV_L |
![]() |
the operator must appear at the "top level" |
M
|
| * | OV_R |
![]() |
the operator must appear at the "top level" |
M
|
| * | DIS_BINTER_R |
![]() |
the occurrence of must appear at the "top level". Moreover and denote some type. |
M
|
| * | DIS_BINTER_L |
![]() |
the occurrence of must appear at the "top level". Moreover and denote some type. |
M
|
| * | DIS_SETMINUS_R |
![]() |
the occurrence of must appear at the "top level". Moreover and denote some type. |
M
|
| * | DIS_SETMINUS_L |
![]() |
the occurrence of must appear at the "top level". Moreover and denote some type. |
M
|
| * | SIM_REL_IMAGE_R |
![]() |
the occurrence of must appear at the "top level". |
M
|
| * | SIM_REL_IMAGE_L |
![]() |
the occurrence of must appear at the "top level". |
M
|
| * | SIM_FCOMP_R |
![]() |
the occurrence of must appear at the "top level". |
M
|
| * | SIM_FCOMP_L |
![]() |
the occurrence of must appear at the "top level". |
M
|
| b | FIN_SUBSETEQ_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_BINTER_R |
![]() |
M
| |
| * | FIN_SETMINUS_R |
![]() |
M
| |
| b | FIN_REL_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_REL_IMG_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_REL_RAN_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_REL_DOM_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| b | FIN_FUN1_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| b | FIN_FUN2_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| b | FIN_FUN_IMG_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| b | FIN_FUN_RAN_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| b | FIN_FUN_DOM_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | LOWER_BOUND_L |
![]() |
must not contain any bound variable |
M
|
| * | LOWER_BOUND_R |
![]() |
must not contain any bound variable |
M
|
| * | UPPER_BOUND_L |
![]() |
must not contain any bound variable |
M
|
| * | UPPER_BOUND_R |
![]() |
must not contain any bound variable |
M
|
| * | FIN_LT_0 |
![]() |
M
| |
| * | FIN_GE_0 |
![]() |
M
| |
| * | CARD_INTERV |
![]() |
must appear at "top-level" |
M
|
| b | CARD_EMPTY_INTERV |
![]() |
must appear at "top-level" |
M
|
| b | CARD_SUBSETEQ |
![]() |
and bear the same type |
M
|
| * | FORALL_INST |
![]() |
is instantiated with ![]() |
M
|
| * | FORALL_INST_MP |
![]() |
is instantiated with and a Modus Ponens is applied |
M
|
| * | CUT |
![]() |
hypothesis is added |
M
|
| * | EXISTS_INST |
![]() |
is instantiated with ![]() |
M
|
| * | DISTINCT_CASE |
![]() |
case distinction on predicate ![]() |
M
|
ONE_POINT_L |
![]() |
The rule can be applied with as well as with ![]() |
A
| |
ONE_POINT_R |
![]() |
The rule can be applied with as well as with ![]() |
A |






and
denote types and
is one of
,
,
,
,
,
,
.












is a variable which is not free in 


operator must appear at the "top level"












operator must appear at the "top level"


![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T]) \ \ \ \ \ }](/images/math/5/3/8/538882eb3fc5acd65e54da755e9513ae.png)
must appear at the "top level". Moreover
and
denote some type.![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H},\;\textbf{Q}(f[S] \binter f[T]) \;\;\vdash\;\;\textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \binter T]) \;\;\vdash \;\; \textbf{G} \ \ \ \ \ }](/images/math/f/3/0/f3035750e6f26b474cb16eb34b1f0aab.png)
![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \setminus f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \setminus T]) \ \ \ \ \ }](/images/math/8/8/a/88a3101cc210b88d5fe59746292f12fe.png)
![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H},\;\textbf{Q}(f[S] \setminus f[T]) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \setminus T]) \;\;\vdash \;\; \textbf{G} \ \ \ \ \ }](/images/math/6/3/c/63ced160657f8cd9129d60373852db7b.png)
![\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \; \textbf{Q}(f[\{ E\} ])}](/images/math/7/d/f/7dfac56e8c4269e247b888bd790b211d.png)
![\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H},\; \textbf{Q}(\{ f(E)\}) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[\{ E\} ]) \;\;\vdash\;\; \textbf{G} }](/images/math/f/6/f/f6fd31552c994d9d3d298f9b5c82d3e9.png)

must appear at the "top level".

in the editing area of the Proof Control Window


in the editing area of the Proof Control Window![\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(r[s]) \ \ \ \ \ \ \ }](/images/math/7/d/1/7d1b728949ca9ee920276cc4d7b89997.png)
in the editing area of the Proof Control Window



![\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(s) }{\textbf{H} \;\;\vdash \;\; \finite\,(f[s]) \ \ \ \ \ \ \ }](/images/math/3/c/4/3c45ac631fda4586637196a0abf643d6.png)



must not contain any bound variable





must appear at "top-level"

![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \;\;\vdash\;\; \textbf{G}}](/images/math/a/c/b/acb596a712a0f720a7d3238f967ccfe6.png)
![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H}, {WD}(E) \;\;\vdash \;\; [x \bcmeq E]\textbf{P} \qquad \textbf{H}, {WD}(E), [x \bcmeq E]\textbf{Q} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \limp \textbf{Q} \;\;\vdash\;\; \textbf{G}}](/images/math/e/2/5/e25e646ecaceca4cb4143a3e66dbb185.png)

is added![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \exists x \qdot \textbf{P} \;\;\vdash\;\; \textbf{G}}](/images/math/a/3/a/a3af36c01f37d2d738cde14ec1be4e20.png)

![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H}, \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} \;\;\vdash \;\; \textbf{G}}{ \textbf{H}, \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} \;\;\vdash\;\; \textbf{G}}](/images/math/8/b/1/8b19ec24619d8d756596ebe54616be06.png)
as well as with 
![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} \;\;\vdash \;\; \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} }{ \textbf{H} \;\;\vdash\;\; \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} }](/images/math/3/7/9/379ac43eaae96f14177427e9cbc89387.png)