Inference Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Laurent m Fixed silly side conditions |
imported>Laurent Fixed EXISTS_INST which was on the wrong side. |
||
Line 168: | Line 168: | ||
{{RRRow}}|*||{{Rulename|CUT}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(\textbf{P}) \qquad \textbf{H}, {WD}(\textbf{P}) \;\;\vdash \;\; \textbf{\textbf{P}} \qquad \textbf{H}, {WD}(\textbf{P}), \textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H} \;\;\vdash\;\; \textbf{G}}</math> || hypothesis <math>\textbf{P}</math> is added || M | {{RRRow}}|*||{{Rulename|CUT}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(\textbf{P}) \qquad \textbf{H}, {WD}(\textbf{P}) \;\;\vdash \;\; \textbf{\textbf{P}} \qquad \textbf{H}, {WD}(\textbf{P}), \textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H} \;\;\vdash\;\; \textbf{G}}</math> || hypothesis <math>\textbf{P}</math> is added || M | ||
{{RRRow}}| | {{RRRow}}|b||{{Rulename|EXISTS_INST}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} \;\;\vdash \;\; \textbf{P}(E)}{\textbf{H} \;\;\vdash\;\; \exists x \qdot \textbf{P}(x)}</math> || <math>x</math> is instantiated with <math>E</math> || M | ||
{{RRRow}}|*||{{Rulename|DISTINCT_CASE}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(\textbf{P}) \qquad \textbf{H}, {WD}(\textbf{P}), \textbf{P} \;\;\vdash \;\; \textbf{\textbf{G}} \qquad \textbf{H}, {WD}(\textbf{P}), \lnot \textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H} \;\;\vdash\;\; \textbf{G}}</math> || case distinction on predicate <math>\textbf{P}</math> || M | {{RRRow}}|*||{{Rulename|DISTINCT_CASE}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(\textbf{P}) \qquad \textbf{H}, {WD}(\textbf{P}), \textbf{P} \;\;\vdash \;\; \textbf{\textbf{G}} \qquad \textbf{H}, {WD}(\textbf{P}), \lnot \textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H} \;\;\vdash\;\; \textbf{G}}</math> || case distinction on predicate <math>\textbf{P}</math> || M |
Revision as of 18:01, 11 November 2009
Conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Inference_Rules.
Rules that are marked with a b in the first column are currently broken in Rodin 1.1 (see bug 2895507).
Name | Rule | Side Condition | A/M
| |
---|---|---|---|---|
* | HYP |
A
| ||
* | HYP_OR |
A
| ||
* | CNTR |
A
| ||
* | FALSE_HYP |
A
| ||
* | TRUE_GOAL |
A
| ||
* | FUN_GOAL |
where and denote types and is one of , , , , , , . | A
| |
* | DBL_HYP |
A
| ||
* | AND_L |
A
| ||
* | AND_R |
A
| ||
* | IMP_L1 |
A
| ||
* | IMP_R |
A
| ||
* | IMP_AND_L |
A
| ||
* | IMP_OR_L |
A
| ||
* | AUTO_MH |
A
| ||
* | NEG_IN_L |
A
| ||
* | NEG_IN_R |
A
| ||
* | XST_L |
A
| ||
* | ALL_R |
A
| ||
* | EQL_LR |
is a variable which is not free in | A
| |
* | EQL_RL |
is a variable which is not free in | A
| |
SUBSET_INTER |
the operator must appear at the "top level" | A
| ||
IN_INTER |
the operator must appear at the "top level" | A
| ||
NOTIN_INTER |
the operator must appear at the "top level" | A
| ||
* | FIN_L_LOWER_BOUND_L |
The goal is discharged | A
| |
* | FIN_L_LOWER_BOUND_R |
The goal is discharged | A
| |
* | FIN_L_UPPER_BOUND_L |
The goal is discharged | A
| |
* | FIN_L_UPPER_BOUND_R |
The goal is discharged | A
| |
* | CONTRADICT_L |
M
| ||
* | CONTRADICT_R |
M
| ||
* | CASE |
M
| ||
b | MH |
M
| ||
b | HM |
M
| ||
* | EQV |
M
| ||
* | OV_L |
the operator must appear at the "top level" | M
| |
* | OV_R |
the operator must appear at the "top level" | M
| |
* | OV_L |
the operator must appear at the "top level" | M
| |
* | OV_R |
the operator must appear at the "top level" | M
| |
* | DIS_BINTER_R |
the occurrence of must appear at the "top level". Moreover and denote some type. | M
| |
* | DIS_BINTER_L |
the occurrence of must appear at the "top level". Moreover and denote some type. | M
| |
* | DIS_SETMINUS_R |
the occurrence of must appear at the "top level". Moreover and denote some type. | M
| |
* | DIS_SETMINUS_L |
the occurrence of must appear at the "top level". Moreover and denote some type. | M
| |
* | SIM_REL_IMAGE_R |
the occurrence of must appear at the "top level". | M
| |
* | SIM_REL_IMAGE_L |
the occurrence of must appear at the "top level". | M
| |
* | SIM_FCOMP_R |
the occurrence of must appear at the "top level". | M
| |
* | SIM_FCOMP_L |
the occurrence of must appear at the "top level". | M
| |
b | FIN_SUBSETEQ_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_BINTER_R |
M
| ||
* | FIN_SETMINUS_R |
M
| ||
b | FIN_REL_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_REL_IMG_R |
M
| ||
* | FIN_REL_RAN_R |
M
| ||
* | FIN_REL_DOM_R |
M
| ||
b | FIN_FUN1_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
b | FIN_FUN2_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
b | FIN_FUN_IMG_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
b | FIN_FUN_RAN_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
b | FIN_FUN_DOM_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | LOWER_BOUND_L |
must not contain any bound variable | M
| |
* | LOWER_BOUND_R |
must not contain any bound variable | M
| |
* | UPPER_BOUND_L |
must not contain any bound variable | M
| |
* | UPPER_BOUND_R |
must not contain any bound variable | M
| |
* | FIN_LT_0 |
M
| ||
* | FIN_GE_0 |
M
| ||
* | CARD_INTERV |
must appear at "top-level" | M
| |
b | CARD_EMPTY_INTERV |
must appear at "top-level" | M
| |
b | CARD_SUBSETEQ |
and bear the same type | M
| |
* | FORALL_INST |
is instantiated with | M
| |
* | FORALL_INST_MP |
is instantiated with and a Modus Ponens is applied | M
| |
* | CUT |
hypothesis is added | M
| |
b | EXISTS_INST |
is instantiated with | M
| |
* | DISTINCT_CASE |
case distinction on predicate | M
| |
ONE_POINT_L |
The rule can be applied with as well as with | A
| ||
ONE_POINT_R |
The rule can be applied with as well as with | A |