Inference Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Laurent Added rule FUN_IMAGE_GOAL |
imported>Laurent Rule FUN_IMAGE_GOAL is manual |
||
Line 20: | Line 20: | ||
{{RRRow}}|*||{{Rulename|FUN_GOAL}}|| <math>\frac{}{\textbf{H},\; f\in E\;\mathit{op}\;F \;\;\vdash\;\; f\in T_1\pfun T_2}</math> || where <math>T_1</math> and <math>T_2</math> denote types and <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || A | {{RRRow}}|*||{{Rulename|FUN_GOAL}}|| <math>\frac{}{\textbf{H},\; f\in E\;\mathit{op}\;F \;\;\vdash\;\; f\in T_1\pfun T_2}</math> || where <math>T_1</math> and <math>T_2</math> denote types and <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || A | ||
{{RRRow}}| ||{{Rulename|FUN_IMAGE_GOAL}}|| <math>\frac{\textbf{H},\; f\in S_1\;\mathit{op}\;S_2,\; f(E)\in S_2\;\;\vdash\;\; \mathbf{P}(f(E))}{\textbf{H},\; f\in S_1\;\mathit{op}\;S_2\;\;\vdash\;\; \mathbf{P}(f(E))}</math> || where <math>\mathit{op}</math> denotes a set of relations (any arrow) and <math>f(E)</math> occurs at the top level || | {{RRRow}}| ||{{Rulename|FUN_IMAGE_GOAL}}|| <math>\frac{\textbf{H},\; f\in S_1\;\mathit{op}\;S_2,\; f(E)\in S_2\;\;\vdash\;\; \mathbf{P}(f(E))}{\textbf{H},\; f\in S_1\;\mathit{op}\;S_2\;\;\vdash\;\; \mathbf{P}(f(E))}</math> || where <math>\mathit{op}</math> denotes a set of relations (any arrow) and <math>f(E)</math> occurs at the top level || M | ||
{{RRRow}}| ||{{Rulename|FUN_GOAL_REC}}|| <math>\frac{}{\textbf{H},\; f\in S_1\;\mathit{op_1}\;(S_2\;\mathit{op_2}\;(\ldots(S_n\;\mathit{op_n}(U\;\mathit{opf}\;V\;))\ldots)) \;\vdash\;\; f(E_1)(E_2)...(E_n)\in T_1\pfun T_2}</math> || where <math>T_1</math> and <math>T_2</math> denote types, <math>\mathit{op}</math> denotes a set of relations (any arrow) and <math>\mathit{opf}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || A | {{RRRow}}| ||{{Rulename|FUN_GOAL_REC}}|| <math>\frac{}{\textbf{H},\; f\in S_1\;\mathit{op_1}\;(S_2\;\mathit{op_2}\;(\ldots(S_n\;\mathit{op_n}(U\;\mathit{opf}\;V\;))\ldots)) \;\vdash\;\; f(E_1)(E_2)...(E_n)\in T_1\pfun T_2}</math> || where <math>T_1</math> and <math>T_2</math> denote types, <math>\mathit{op}</math> denotes a set of relations (any arrow) and <math>\mathit{opf}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || A |
Revision as of 14:08, 27 August 2010
CAUTION! Any modification to this page shall be announced on the User mailing list!
Conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Inference_Rules.
Name | Rule | Side Condition | A/M
| |
---|---|---|---|---|
* | HYP |
![]() |
A
| |
* | HYP_OR |
![]() |
A
| |
* | CNTR |
![]() |
A
| |
* | FALSE_HYP |
![]() |
A
| |
* | TRUE_GOAL |
![]() |
A
| |
* | FUN_GOAL |
![]() |
where ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
A
|
FUN_IMAGE_GOAL |
![]() |
where ![]() ![]() |
M
| |
FUN_GOAL_REC |
![]() |
where ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
A
| |
* | DBL_HYP |
![]() |
A
| |
* | AND_L |
![]() |
A
| |
* | AND_R |
![]() |
A
| |
IMP_L1 |
![]() |
A
| ||
* | IMP_R |
![]() |
A
| |
* | IMP_AND_L |
![]() |
A
| |
* | IMP_OR_L |
![]() |
A
| |
* | AUTO_MH |
![]() |
A
| |
* | NEG_IN_L |
![]() |
A
| |
* | NEG_IN_R |
![]() |
A
| |
* | XST_L |
![]() |
A
| |
* | ALL_R |
![]() |
A
| |
* | EQL_LR |
![]() |
![]() ![]() |
A
|
* | EQL_RL |
![]() |
![]() ![]() |
A
|
SUBSET_INTER |
![]() |
the ![]() |
A
| |
IN_INTER |
![]() |
the ![]() |
A
| |
NOTIN_INTER |
![]() |
the ![]() |
A
| |
* | FIN_L_LOWER_BOUND_L |
![]() |
The goal is discharged | A
|
* | FIN_L_LOWER_BOUND_R |
![]() |
The goal is discharged | A
|
* | FIN_L_UPPER_BOUND_L |
![]() |
The goal is discharged | A
|
* | FIN_L_UPPER_BOUND_R |
![]() |
The goal is discharged | A
|
* | CONTRADICT_L |
![]() |
M
| |
* | CONTRADICT_R |
![]() |
M
| |
* | CASE |
![]() |
M
| |
* | MH |
![]() |
M
| |
* | HM |
![]() |
M
| |
EQV |
![]() |
M
| ||
* | OV_SETENUM_L |
![]() |
the ![]() |
A
|
* | OV_SETENUM_R |
![]() |
the ![]() |
A
|
* | OV_L |
![]() |
the ![]() |
A
|
* | OV_R |
![]() |
the ![]() |
A
|
* | DIS_BINTER_R |
![]() |
the occurrence of ![]() ![]() ![]() |
M
|
* | DIS_BINTER_L |
![]() |
the occurrence of ![]() ![]() ![]() |
M
|
* | DIS_SETMINUS_R |
![]() |
the occurrence of ![]() ![]() ![]() |
M
|
* | DIS_SETMINUS_L |
![]() |
the occurrence of ![]() ![]() ![]() |
M
|
* | SIM_REL_IMAGE_R |
![]() |
the occurrence of ![]() |
M
|
* | SIM_REL_IMAGE_L |
![]() |
the occurrence of ![]() |
M
|
* | SIM_FCOMP_R |
![]() |
the occurrence of ![]() |
M
|
* | SIM_FCOMP_L |
![]() |
the occurrence of ![]() |
M
|
* | FIN_SUBSETEQ_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_BINTER_R |
![]() |
M
| |
* | FIN_SETMINUS_R |
![]() |
M
| |
* | FIN_REL_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_REL_IMG_R |
![]() |
M
| |
* | FIN_REL_RAN_R |
![]() |
M
| |
* | FIN_REL_DOM_R |
![]() |
M
| |
* | FIN_FUN1_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_FUN2_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_FUN_IMG_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_FUN_RAN_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_FUN_DOM_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | LOWER_BOUND_L |
![]() |
![]() |
M
|
* | LOWER_BOUND_R |
![]() |
![]() |
M
|
* | UPPER_BOUND_L |
![]() |
![]() |
M
|
* | UPPER_BOUND_R |
![]() |
![]() |
M
|
* | FIN_LT_0 |
![]() |
M
| |
* | FIN_GE_0 |
![]() |
M
| |
CARD_INTERV |
![]() |
![]() |
M
| |
CARD_EMPTY_INTERV |
![]() |
![]() |
M
| |
* | DERIV_LE_CARD |
![]() |
![]() ![]() |
M
|
* | DERIV_GE_CARD |
![]() |
![]() ![]() |
M
|
* | DERIV_LT_CARD |
![]() |
![]() ![]() |
M
|
* | DERIV_GT_CARD |
![]() |
![]() ![]() |
M
|
* | DERIV_EQUAL_CARD |
![]() |
![]() ![]() |
M
|
SIMP_CARD_SETMINUS_L |
![]() |
![]() |
M | |
SIMP_CARD_SETMINUS_R |
![]() |
![]() |
M
| |
SIMP_CARD_CPROD_L |
![]() |
![]() |
M | |
SIMP_CARD_CPROD_R |
![]() |
![]() |
M
| |
* | FORALL_INST |
![]() |
![]() ![]() |
M
|
* | FORALL_INST_MP |
![]() |
![]() ![]() |
M
|
* | CUT |
![]() |
hypothesis ![]() |
M
|
* | EXISTS_INST |
![]() |
![]() ![]() |
M
|
* | DISTINCT_CASE |
![]() |
case distinction on predicate ![]() |
M
|
ONE_POINT_L |
![]() |
The rule can be applied with ![]() ![]() |
A
| |
ONE_POINT_R |
![]() |
The rule can be applied with ![]() ![]() |
A
| |
DATATYPE_DISTINCT_CASE |
![]() |
where ![]() ![]() ![]() ![]() ![]() ![]() |
M
| |
DATATYPE_INDUCTION |
![]() |
(N = Non inductive; I = Inductive) where ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
M |