Relation Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Frederic No edit summary |
imported>Frederic No edit summary |
||
Line 134: | Line 134: | ||
{{RRRow}}|<font size="-2"> DEF_IN_TSURJ </font>||<math> f \in S \tsur T \;\;\defi\;\; f \in S \psur T \land \dom (f) = S </math>|| || M | {{RRRow}}|<font size="-2"> DEF_IN_TSURJ </font>||<math> f \in S \tsur T \;\;\defi\;\; f \in S \psur T \land \dom (f) = S </math>|| || M | ||
{{RRRow}}|<font size="-2"> DEF_IN_BIJ </font>||<math> f \in S \tbij T \;\;\defi\;\; f \in S \tinj T \land \ran (f) = T </math>|| || M | {{RRRow}}|<font size="-2"> DEF_IN_BIJ </font>||<math> f \in S \tbij T \;\;\defi\;\; f \in S \tinj T \land \ran (f) = T </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_BCOMP_BUNION </font>||<math> r \bcomp (s \bunion t) \;\;\defi\;\; (r \bcomp s) \bunion (r \bcomp s) </math>|| || M | {{RRRow}}|<font size="-2"> DISTRI_BCOMP_BUNION </font>||<math> r \bcomp (s \bunion t) \;\;\defi\;\; (r \bcomp s) \bunion (r \bcomp s) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_FCOMP_BUNION_R </font>||<math> p \fcomp (q \bunion r) \;\;\defi\;\; (p \fcomp q) \bunion (p \fcomp r) </math>|| || M | {{RRRow}}|<font size="-2"> DISTRI_FCOMP_BUNION_R </font>||<math> p \fcomp (q \bunion r) \;\;\defi\;\; (p \fcomp q) \bunion (p \fcomp r) </math>|| || M | ||
Line 188: | Line 187: | ||
{{RRRow}}|<font size="-2"> DISTRI_DOM_BUNION </font>||<math> \dom (p \bunion q) \;\;\defi\;\; \dom (p) \bunion \dom (q) </math>|| || M | {{RRRow}}|<font size="-2"> DISTRI_DOM_BUNION </font>||<math> \dom (p \bunion q) \;\;\defi\;\; \dom (p) \bunion \dom (q) </math>|| || M | ||
{{RRRow}}|<font size="-2"> DISTRI_RAN_BUNION </font>||<math> \ran (p \bunion q) \;\;\defi\;\; \ran (p) \bunion \ran (q) </math>|| || M | {{RRRow}}|<font size="-2"> DISTRI_RAN_BUNION </font>||<math> \ran (p \bunion q) \;\;\defi\;\; \ran (p) \bunion \ran (q) </math>|| || M | ||
|} | |} | ||
Revision as of 10:13, 30 January 2009
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
SIMP_DOM_COMPSET | ![]() |
A | ||
SIMP_DOM_CONVERSE | ![]() |
A | ||
SIMP_RAN_COMPSET | ![]() |
A | ||
SIMP_RAN_CONVERSE | ![]() |
A | ||
SIMP_SPECIAL_OVERL | ![]() |
A | ||
SIMP_MULTI_OVERL | ![]() |
A | ||
SIMP_TYPE_OVERL_CPROD | ![]() |
where ![]() |
A | |
SIMP_SPECIAL_DOMRES_L | ![]() |
A | ||
SIMP_SPECIAL_DOMRES_R | ![]() |
A | ||
SIMP_TYPE_DOMRES | ![]() |
where ![]() |
A | |
SIMP_MULTI_DOMRES_DOM | ![]() |
A | ||
SIMP_MULTI_DOMRES_RAN | ![]() |
A | ||
SIMP_DOMRES_ID | ![]() |
A | ||
SIMP_SPECIAL_RANRES_R | ![]() |
A | ||
SIMP_SPECIAL_RANRES_L | ![]() |
A | ||
SIMP_TYPE_RANRES | ![]() |
where ![]() |
A | |
SIMP_MULTI_RANRES_RAN | ![]() |
A | ||
SIMP_MULTI_RANRES_DOM | ![]() |
A | ||
SIMP_RANRES_ID | ![]() |
A | ||
SIMP_SPECIAL_DOMSUB_L | ![]() |
A | ||
SIMP_SPECIAL_DOMSUB_R | ![]() |
A | ||
SIMP_TYPE_DOMSUB | ![]() |
where ![]() |
A | |
SIMP_MULTI_DOMSUB_DOM | ![]() |
A | ||
SIMP_DOMSUB_ID | ![]() |
A | ||
SIMP_SPECIAL_RANSUB_R | ![]() |
A | ||
SIMP_SPECIAL_RANSUB_L | ![]() |
A | ||
SIMP_TYPE_RANSUB | ![]() |
where ![]() |
A | |
SIMP_MULTI_RANSUB_RAN | ![]() |
A | ||
SIMP_RANSUB_ID | ![]() |
A | ||
SIMP_SPECIAL_FCOMP | ![]() |
A | ||
SIMP_TYPE_FCOMP_ID | ![]() |
where ![]() |
A | |
SIMP_TYPE_FCOMP_R | ![]() |
where ![]() ![]() |
A | |
SIMP_TYPE_FCOMP_L | ![]() |
where ![]() ![]() |
A | |
SIMP_FCOMP_ID | ![]() |
A | ||
SIMP_SPECIAL_BCOMP | ![]() |
A | ||
SIMP_TYPE_BCOMP_ID | ![]() |
where ![]() |
A | |
SIMP_TYPE_BCOMP_L | ![]() |
where ![]() ![]() |
A | |
SIMP_TYPE_BCOMP_R | ![]() |
where ![]() ![]() |
A | |
SIMP_BCOMP_ID | ![]() |
A | ||
SIMP_SPECIAL_DPROD_R | ![]() |
A | ||
SIMP_SPECIAL_DPROD_L | ![]() |
A | ||
SIMP_TYPE_DPROD | ![]() |
where \mathit{Ta} and \mathit{Tb} are type expressions and ![]() ![]() |
A | |
SIMP_SPECIAL_PPROD_R | ![]() |
A | ||
SIMP_SPECIAL_PPROD_L | ![]() |
A | ||
SIMP_TYPE_PPROD | ![]() |
where \mathit{Ta} and \mathit{Tb} are type expressions and ![]() ![]() |
A | |
SIMP_SPECIAL_RELIMAGE_R | ![]() |
A | ||
SIMP_SPECIAL_RELIMAGE_L | ![]() |
A | ||
SIMP_TYPE_RELIMAGE | ![]() |
where ![]() |
A | |
SIMP_MULTI_RELIMAGE_DOM | ![]() |
A | ||
SIMP_TYPE_RELIMAGE_ID | ![]() |
where ![]() |
A | |
SIMP_RELIMAGE_ID | ![]() |
A | ||
SIMP_MULTI_RELIMAGE_CPROD_SING | ![]() |
where ![]() |
A | |
SIMP_MULTI_RELIMAGE_SING_MAPSTO | ![]() |
where ![]() |
A | |
SIMP_MULTI_RELIMAGE_CONVERSE_RANSUB | ![]() |
A | ||
SIMP_MULTI_RELIMAGE_CONVERSE_RANRES | ![]() |
A | ||
SIMP_RELIMAGE_CONVERSE_DOMSUB | ![]() |
A | ||
DERIV_RELIMAGE_RANSUB | ![]() |
M | ||
DERIV_RELIMAGE_RANRES | ![]() |
M | ||
SIMP_MULTI_RELIMAGE_DOMSUB | ![]() |
A | ||
DERIV_RELIMAGE_DOMSUB | ![]() |
M | ||
DERIV_RELIMAGE_DOMRES | ![]() |
M | ||
SIMP_SPECIAL_CONVERSE | ![]() |
A | ||
SIMP_CONVERSE_ID | ![]() |
A | ||
SIMP_TYPE_CONVERSE | ![]() |
where ![]() ![]() |
A | |
SIMP_CONVERSE_SETENUM | ![]() |
A | ||
SIMP_CONVERSE_COMPSET | ![]() |
A | ||
SIMP_SPECIAL_ID | ![]() |
A | ||
SIMP_DOM_ID | ![]() |
A | ||
SIMP_RAN_ID | ![]() |
A | ||
SIMP_FCOMP_ID_L | ![]() |
A | ||
SIMP_FCOMP_ID_R | ![]() |
A | ||
SIMP_SPECIAL_REL_R | ![]() |
idem for operators ![]() |
A | |
SIMP_SPECIAL_REL_L | ![]() |
idem for operators ![]() |
A | |
SIMP_SPECIAL_EQUAL_REL | ![]() |
idem for operators ![]() |
A | |
SIMP_SPECIAL_EQUAL_RELDOM | ![]() |
idem for operators ![]() |
A | |
SIMP_SPECIAL_PRJ1 | ![]() |
A | ||
SIMP_SPECIAL_PRJ2 | ![]() |
A | ||
SIMP_FUNIMAGE_PRJ1 | ![]() |
A | ||
SIMP_FUNIMAGE_PRJ2 | ![]() |
A | ||
SIMP_DOM_PRJ1 | ![]() |
A | ||
SIMP_DOM_PRJ2 | ![]() |
A | ||
SIMP_RAN_PRJ1 | ![]() |
A | ||
SIMP_RAN_PRJ2 | ![]() |
A | ||
SIMP_SPECIAL_LAMBDA | ![]() |
A | ||
SIMP_FUNIMAGE_LAMBDA | ![]() |
A | ||
SIMP_DOM_LAMBDA | ![]() |
A | ||
SIMP_RAN_LAMBDA | ![]() |
A | ||
SIMP_MULTI_FUNIMAGE_SETENUM_LL | ![]() |
A | ||
SIMP_MULTI_FUNIMAGE_SETENUM_LR | ![]() |
A | ||
SIMP_MULTI_FUNIMAGE_OVERL_SETENUM | ![]() |
A | ||
SIMP_MULTI_FUNIMAGE_BUNION_SETENUM | ![]() |
A | ||
SIMP_FUNIMAGE_CPROD | ![]() |
A | ||
SIMP_FUNIMAGE_ID | ![]() |
A | ||
SIMP_FUNIMAGE_FUNIMAGE_CONVERSE | ![]() |
A | ||
SIMP_FUNIMAGE_CONVERSE_FUNIMAGE | ![]() |
A | ||
DEF_BCOMP | ![]() |
M | ||
DERIV_ID_SING | ![]() |
where ![]() |
M | |
SIMP_SPECIAL_DOM | ![]() |
A | ||
SIMP_SPECIAL_RAN | ![]() |
A | ||
SIMP_CONVERSE_CONVERSE | ![]() |
A | ||
DERIV_RELIMAGE_FCOMP | ![]() |
M | ||
DERIV_FCOMP_DOMRES | ![]() |
M | ||
DERIV_FCOMP_DOMSUB | ![]() |
M | ||
DERIV_FCOMP_RANRES | ![]() |
M | ||
DERIV_FCOMP_RANSUB | ![]() |
M | ||
SIMP_SPECIAL_EQUAL_RELDOMRAN | ![]() |
idem for operators ![]() |
A | |
SIMP_TYPE_DOM | ![]() |
where ![]() ![]() |
A | |
SIMP_TYPE_RAN | ![]() |
where ![]() ![]() |
A | |
SIMP_MULTI_DOM_CPROD | ![]() |
A | ||
SIMP_MULTI_RAN_CPROD | ![]() |
A | ||
DEF_IN_DOM | ![]() |
M | ||
DEF_IN_RAN | ![]() |
M | ||
DEF_IN_CONVERSE | ![]() |
M | ||
DEF_IN_DOMRES | ![]() |
M | ||
DEF_IN_RANRES | ![]() |
M | ||
DEF_IN_DOMSUB | ![]() |
M | ||
DEF_IN_RANSUB | ![]() |
M | ||
DEF_IN_RELIMAGE | ![]() |
M | ||
DEF_IN_FCOMP | ![]() |
M | ||
DEF_OVERL | ![]() |
M | ||
DEF_IN_ID | ![]() |
M | ||
DEF_IN_DPROD | ![]() |
M | ||
DEF_IN_PPROD | ![]() |
M | ||
DEF_IN_RELDOM | ![]() |
M | ||
DEF_IN_RELRAN | ![]() |
M | ||
DEF_IN_RELDOMRAN | ![]() |
M | ||
DEF_IN_FCT | ![]() |
M | ||
DEF_IN_TFCT | ![]() |
M | ||
DEF_IN_INJ | ![]() |
M | ||
DEF_IN_TINJ | ![]() |
M | ||
DEF_IN_SURJ | ![]() |
M | ||
DEF_IN_TSURJ | ![]() |
M | ||
DEF_IN_BIJ | ![]() |
M | ||
DISTRI_BCOMP_BUNION | ![]() |
M | ||
DISTRI_FCOMP_BUNION_R | ![]() |
M | ||
DISTRI_FCOMP_BUNION_L | ![]() |
M | ||
DISTRI_DPROD_BUNION | ![]() |
M | ||
DISTRI_DPROD_BINTER | ![]() |
M | ||
DISTRI_DPROD_SETMINUS | ![]() |
M | ||
DISTRI_DPROD_OVERL | ![]() |
M | ||
DISTRI_PPROD_BUNION | ![]() |
M | ||
DISTRI_PPROD_BINTER | ![]() |
M | ||
DISTRI_PPROD_SETMINUS | ![]() |
M | ||
DISTRI_PPROD_OVERL | ![]() |
M | ||
DISTRI_OVERL_BUNION_L | ![]() |
M | ||
DISTRI_OVERL_BINTER_L | ![]() |
M | ||
DISTRI_DOMRES_BUNION_R | ![]() |
M | ||
DISTRI_DOMRES_BUNION_L | ![]() |
M | ||
DISTRI_DOMRES_BINTER_R | ![]() |
M | ||
DISTRI_DOMRES_BINTER_L | ![]() |
M | ||
DISTRI_DOMRES_SETMINUS_R | ![]() |
M | ||
DISTRI_DOMRES_SETMINUS_L | ![]() |
M | ||
DISTRI_DOMRES_DPROD | ![]() |
M | ||
DISTRI_DOMRES_OVERL | ![]() |
M | ||
DISTRI_DOMSUB_BUNION_R | ![]() |
M | ||
DISTRI_DOMSUB_BUNION_L | ![]() |
M | ||
DISTRI_DOMSUB_BINTER_R | ![]() |
M | ||
DISTRI_DOMSUB_BINTER_L | ![]() |
M | ||
DISTRI_DOMSUB_DPROD | ![]() |
M | ||
DISTRI_DOMSUB_OVERL | ![]() |
M | ||
DISTRI_RANRES_BUNION_R | ![]() |
M | ||
DISTRI_RANRES_BUNION_L | ![]() |
M | ||
DISTRI_RANRES_BINTER_R | ![]() |
M | ||
DISTRI_RANRES_BINTER_L | ![]() |
M | ||
DISTRI_RANRES_SETMINUS_R | ![]() |
M | ||
DISTRI_RANRES_SETMINUS_L | ![]() |
M | ||
DISTRI_RANSUB_BUNION_R | ![]() |
M | ||
DISTRI_RANSUB_BUNION_L | ![]() |
M | ||
DISTRI_RANSUB_BINTER_R | ![]() |
M | ||
DISTRI_RANSUB_BINTER_L | ![]() |
M | ||
DISTRI_CONVERSE_BUNION | ![]() |
M | ||
DISTRI_CONVERSE_BINTER | ![]() |
M | ||
DISTRI_CONVERSE_SETMINUS | ![]() |
M | ||
DISTRI_CONVERSE_BCOMP | ![]() |
M | ||
DISTRI_CONVERSE_FCOMP | ![]() |
M | ||
DISTRI_CONVERSE_PPROD | ![]() |
M | ||
DISTRI_CONVERSE_DOMRES | ![]() |
M | ||
DISTRI_CONVERSE_DOMSUB | ![]() |
M | ||
DISTRI_CONVERSE_RANRES | ![]() |
M | ||
DISTRI_CONVERSE_RANSUB | ![]() |
M | ||
DISTRI_DOM_BUNION | ![]() |
M | ||
DISTRI_RAN_BUNION | ![]() |
M | ||
DISTRI_RELIMAGE_BUNION_R | ![]() |
M | ||
DISTRI_RELIMAGE_BUNION_L | ![]() |
M | ||
DISTRI_DOM_BUNION | ![]() |
M | ||
DISTRI_RAN_BUNION | ![]() |
M |