Relation Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Laurent Put back rule SIMP_FUNIMAGE_CONVERSE_FUNIMAGE |
imported>Laurent m Fixed rule names to make them easy to extract |
||
Line 1: | Line 1: | ||
{{RRHeader}} | {{RRHeader}} | ||
{{RRRow}}|*||{{Rulename|SIMP_DOM_COMPSET}}||<math> \dom (\{ x \mapsto a, \ldots , y \mapsto b\} ) \;\;\defi\;\; \{ x, \ldots , y\} </math>|| || A | |||
{{RRRow}}|*||{{Rulename|SIMP_DOM_CONVERSE}}||<math> \dom (r^{-1} ) \;\;\defi\;\; \ran (r) </math | |||
f \in S \pfun T & \defi & f \in S \rel T \\ & \land & (\forall x,y,z \qdot x \mapsto y \in f \land x \mapsto z \in f \limp y = z) \\ \end{array} </math>|| || M | f \in S \pfun T & \defi & f \in S \rel T \\ & \land & (\forall x,y,z \qdot x \mapsto y \in f \land x \mapsto z \in f \limp y = z) \\ \end{array} </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DEF_IN_TFCT}}||<math> f \in S \tfun T \;\;\defi\;\; f \in S \pfun T \land \dom (f) = S </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DEF_IN_INJ}}||<math> f \in S \pinj T \;\;\defi\;\; f \in S \pfun T \land f^{-1} \in T \pfun S </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DEF_IN_TINJ}}||<math> f \in S \tinj T \;\;\defi\;\; f \in S \pinj T \land \dom (f) = S </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DEF_IN_SURJ}}||<math> f \in S \pfun T \;\;\defi\;\; f \in S \pfun T \land \ran (f) = T </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DEF_IN_TSURJ}}||<math> f \in S \tsur T \;\;\defi\;\; f \in S \psur T \land \dom (f) = S </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DEF_IN_BIJ}}||<math> f \in S \tbij T \;\;\defi\;\; f \in S \tinj T \land \ran (f) = T </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_BCOMP_BUNION}}||<math> r \bcomp (s \bunion t) \;\;\defi\;\; (r \bcomp s) \bunion (r \bcomp s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_FCOMP_BUNION_R}}||<math> p \fcomp (q \bunion r) \;\;\defi\;\; (p \fcomp q) \bunion (p \fcomp r) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_FCOMP_BUNION_L}}||<math> (q \bunion r) \fcomp p \;\;\defi\;\; (q \fcomp p) \bunion (r \fcomp p) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DPROD_BUNION}}||<math> r \dprod (s \bunion t) \;\;\defi\;\; (r \dprod s) \bunion (r \dprod t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DPROD_BINTER}}||<math> r \dprod (s \binter t) \;\;\defi\;\; (r \dprod s) \binter (r \dprod t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DPROD_SETMINUS}}||<math> r \dprod (s \setminus t) \;\;\defi\;\; (r \dprod s) \setminus (r \dprod t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DPROD_OVERL}}||<math> r \dprod (s \ovl t) \;\;\defi\;\; (r \dprod s) \ovl (r \dprod t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_PPROD_BUNION}}||<math> r \pprod (s \bunion t) \;\;\defi\;\; (r \pprod s) \bunion (r \pprod t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_PPROD_BINTER}}||<math> r \pprod (s \binter t) \;\;\defi\;\; (r \pprod s) \binter (r \pprod t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_PPROD_SETMINUS}}||<math> r \pprod (s \setminus t) \;\;\defi\;\; (r \pprod s) \setminus (r \pprod t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_PPROD_OVERL}}||<math> r \pprod (s \ovl t) \;\;\defi\;\; (r \pprod s) \ovl (r \pprod t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_OVERL_BUNION_L}}||<math> (p \bunion q) \ovl r \;\;\defi\;\; (p \ovl r) \bunion (q \ovl r) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_OVERL_BINTER_L}}||<math> (p \binter q) \ovl r \;\;\defi\;\; (p \ovl r) \binter (q \ovl r) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_BUNION_R}}||<math> s \domres (p \bunion q) \;\;\defi\;\; (s \domres p) \bunion (s \domres q) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_BUNION_L}}||<math> (s \bunion t) \domres r \;\;\defi\;\; (s \domres r) \bunion (t \domres r) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_BINTER_R}}||<math> s \domres (p \binter q) \;\;\defi\;\; (s \domres p) \binter (s \domres q) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_BINTER_L}}||<math> (s \binter t) \domres r \;\;\defi\;\; (s \domres r) \binter (t \domres r) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_SETMINUS_R}}||<math> s \domres (p \setminus q) \;\;\defi\;\; (s \domres p) \setminus (s \domres q) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_SETMINUS_L}}||<math> (s \setminus t) \domres r \;\;\defi\;\; (s \domres r) \setminus (t \domres r) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_DPROD}}||<math> s \domres (p \dprod q) \;\;\defi\;\; (s \domres p) \dprod (s \domres q) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMRES_OVERL}}||<math> s \domres (r \ovl q) \;\;\defi\;\; (s \domres r) \ovl (s \domres q) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMSUB_BUNION_R}}||<math> s \domsub (p \bunion q) \;\;\defi\;\; (s \domsub p) \bunion (s \domsub q) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMSUB_BUNION_L}}||<math> (s \bunion t) \domsub r \;\;\defi\;\; (s \domsub r) \bunion (t \domsub r) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMSUB_BINTER_R}}||<math> s \domsub (p \binter q) \;\;\defi\;\; (s \domsub p) \binter (s \domsub q) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMSUB_BINTER_L}}||<math> (s \binter t) \domsub r \;\;\defi\;\; (s \domsub r) \binter (t \domsub r) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMSUB_DPROD}}||<math> A \domsub (r \dprod s) \;\;\defi\;\; (A \domsub r) \dprod (A \domsub s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOMSUB_OVERL}}||<math> A \domsub (r \ovl s) \;\;\defi\;\; (A \domsub r) \ovl (A \domsub s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANRES_BUNION_R}}||<math> r \ranres (s \bunion t) \;\;\defi\;\; (r \ranres s) \bunion (r \ranres t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANRES_BUNION_L}}||<math> (p \bunion q) \ranres s \;\;\defi\;\; (p \ranres s) \bunion (q \ranres s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANRES_BINTER_R}}||<math> r \ranres (s \binter t) \;\;\defi\;\; (r \ranres s) \binter (r \ranres t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANRES_BINTER_L}}||<math> (p \binter q) \ranres s \;\;\defi\;\; (p \ranres s) \binter (q \ranres s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANRES_SETMINUS_R}}||<math> r \ranres (s \setminus t) \;\;\defi\;\; (r \ranres s) \setminus (r \ranres t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANRES_SETMINUS_L}}||<math> (p \setminus q) \ranres s \;\;\defi\;\; (p \ranres s) \setminus (q \ranres s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANSUB_BUNION_R}}||<math> (r \bunion s) \ransub t \;\;\defi\;\; (r \ransub t) \bunion (s \ransub t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANSUB_BUNION_L}}||<math> (p \bunion q) \ransub s \;\;\defi\;\; (p \ransub s) \bunion (q \ransub s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANSUB_BINTER_R}}||<math> (r \binter s) \ransub t \;\;\defi\;\; (r \ransub t) \binter (s \ransub t) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RANSUB_BINTER_L}}||<math> (p \binter q) \ransub s \;\;\defi\;\; (p \ransub s) \binter (q \ransub s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_BUNION}}||<math> (p \bunion q)^{-1} \;\;\defi\;\; p^{-1} \bunion q^{-1} </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_BINTER}}||<math> (p \binter q)^{-1} \;\;\defi\;\; p^{-1} \binter q^{-1} </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_SETMINUS}}||<math> (r \setminus s)^{-1} \;\;\defi\;\; r^{-1} \setminus s^{-1} </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_BCOMP}}||<math> (r \bcomp s)^{-1} \;\;\defi\;\; (s^{-1} \bcomp r^{-1} ) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_FCOMP}}||<math> (p \fcomp q)^{-1} \;\;\defi\;\; (q^{-1} \fcomp p^{-1} ) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_PPROD}}||<math> (r \pprod s)^{-1} \;\;\defi\;\; r^{-1} \pprod s^{-1} </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_DOMRES}}||<math> (s \domres r)^{-1} \;\;\defi\;\; r^{-1} \ranres s </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_DOMSUB}}||<math> (s \domsub r)^{-1} \;\;\defi\;\; r^{-1} \ransub s </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_RANRES}}||<math> (r \ranres s)^{-1} \;\;\defi\;\; s \domres r^{-1} </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_CONVERSE_RANSUB}}||<math> (r \ransub s)^{-1} \;\;\defi\;\; s \domsub r^{-1} </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOM_BUNION}}||<math> \dom (r \bunion s) \;\;\defi\;\; \dom (r) \bunion \dom (s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RAN_BUNION}}||<math> \ran (r \bunion s) \;\;\defi\;\; \ran (r) \bunion \ran (s) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RELIMAGE_BUNION_R}}||<math> r[S \bunion T] \;\;\defi\;\; r[S] \bunion r[T] </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RELIMAGE_BUNION_L}}||<math> (p \bunion q)[S] \;\;\defi\;\; p[S] \bunion q[S] </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_DOM_BUNION}}||<math> \dom (p \bunion q) \;\;\defi\;\; \dom (p) \bunion \dom (q) </math>|| || M | ||
{{RRRow}}|*|| | {{RRRow}}|*||{{Rulename|DISTRI_RAN_BUNION}}||<math> \ran (p \bunion q) \;\;\defi\;\; \ran (p) \bunion \ran (q) </math>|| || M | ||
|} | |} |
Revision as of 10:31, 8 July 2009
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | SIMP_DOM_COMPSET |
A | ||
* | SIMP_DOM_CONVERSE |
A | ||
* | SIMP_RAN_COMPSET |
A | ||
* | SIMP_RAN_CONVERSE |
A | ||
* | SIMP_SPECIAL_OVERL |
A | ||
* | SIMP_MULTI_OVERL |
A | ||
* | SIMP_TYPE_OVERL_CPROD |
where is a type expression | A | |
SIMP_SPECIAL_DOMRES_L |
A | |||
SIMP_SPECIAL_DOMRES_R |
A | |||
* | SIMP_TYPE_DOMRES |
where is a type expression | A | |
* | SIMP_MULTI_DOMRES_DOM |
A | ||
* | SIMP_MULTI_DOMRES_RAN |
A | ||
* | SIMP_DOMRES_ID |
A | ||
SIMP_SPECIAL_RANRES_R |
A | |||
SIMP_SPECIAL_RANRES_L |
A | |||
* | SIMP_TYPE_RANRES |
where is a type expression | A | |
* | SIMP_MULTI_RANRES_RAN |
A | ||
* | SIMP_MULTI_RANRES_DOM |
A | ||
* | SIMP_RANRES_ID |
A | ||
SIMP_SPECIAL_DOMSUB_L |
A | |||
SIMP_SPECIAL_DOMSUB_R |
A | |||
* | SIMP_TYPE_DOMSUB |
where is a type expression | A | |
* | SIMP_MULTI_DOMSUB_DOM |
A | ||
* | SIMP_DOMSUB_ID |
A | ||
SIMP_SPECIAL_RANSUB_R |
A | |||
SIMP_SPECIAL_RANSUB_L |
A | |||
* | SIMP_TYPE_RANSUB |
where is a type expression | A | |
* | SIMP_MULTI_RANSUB_RAN |
A | ||
* | SIMP_RANSUB_ID |
A | ||
SIMP_SPECIAL_FCOMP |
A | |||
* | SIMP_TYPE_FCOMP_ID |
where is a type expression | A | |
* | SIMP_TYPE_FCOMP_R |
where is a type expression equal to | A | |
* | SIMP_TYPE_FCOMP_L |
where is a type expression equal to | A | |
* | SIMP_FCOMP_ID |
A | ||
SIMP_SPECIAL_BCOMP |
A | |||
* | SIMP_TYPE_BCOMP_ID |
where is a type expression | A | |
* | SIMP_TYPE_BCOMP_L |
where is a type expression equal to | A | |
* | SIMP_TYPE_BCOMP_R |
where is a type expression equal to | A | |
* | SIMP_BCOMP_ID |
A | ||
SIMP_SPECIAL_DPROD_R |
A | |||
SIMP_SPECIAL_DPROD_L |
A | |||
* | SIMP_TYPE_DPROD |
where and are type expressions and and | A | |
SIMP_SPECIAL_PPROD_R |
A | |||
SIMP_SPECIAL_PPROD_L |
A | |||
* | SIMP_TYPE_PPROD |
where and are type expressions and and | A | |
* | SIMP_SPECIAL_RELIMAGE_R |
A | ||
SIMP_SPECIAL_RELIMAGE_L |
A | |||
* | SIMP_TYPE_RELIMAGE |
where is a type expression | A | |
* | SIMP_MULTI_RELIMAGE_DOM |
A | ||
* | SIMP_TYPE_RELIMAGE_ID |
where is a type expression | A | |
* | SIMP_RELIMAGE_ID |
A | ||
* | SIMP_MULTI_RELIMAGE_CPROD_SING |
where is a single expression | A | |
* | SIMP_MULTI_RELIMAGE_SING_MAPSTO |
where is a single expression | A | |
* | SIMP_MULTI_RELIMAGE_CONVERSE_RANSUB |
A | ||
* | SIMP_MULTI_RELIMAGE_CONVERSE_RANRES |
A | ||
* | SIMP_RELIMAGE_CONVERSE_DOMSUB |
A | ||
* | DERIV_RELIMAGE_RANSUB |
M | ||
* | DERIV_RELIMAGE_RANRES |
M | ||
* | SIMP_MULTI_RELIMAGE_DOMSUB |
A | ||
* | DERIV_RELIMAGE_DOMSUB |
M | ||
* | DERIV_RELIMAGE_DOMRES |
M | ||
SIMP_SPECIAL_CONVERSE |
A | |||
* | SIMP_CONVERSE_ID |
A | ||
* | SIMP_TYPE_CONVERSE |
where is a type expression equal to | A | |
* | SIMP_CONVERSE_SETENUM |
A | ||
* | SIMP_CONVERSE_COMPSET |
A | ||
SIMP_SPECIAL_ID |
A | |||
* | SIMP_DOM_ID |
A | ||
* | SIMP_RAN_ID |
A | ||
* | SIMP_FCOMP_ID_L |
A | ||
* | SIMP_FCOMP_ID_R |
A | ||
SIMP_SPECIAL_REL_R |
idem for operators | A | ||
SIMP_SPECIAL_REL_L |
idem for operators | A | ||
SIMP_SPECIAL_EQUAL_REL |
idem for operators | A | ||
SIMP_SPECIAL_EQUAL_RELDOM |
idem for operators | A | ||
SIMP_SPECIAL_PRJ1 |
A | |||
SIMP_SPECIAL_PRJ2 |
A | |||
* | SIMP_FUNIMAGE_PRJ1 |
A | ||
* | SIMP_FUNIMAGE_PRJ2 |
A | ||
* | SIMP_DOM_PRJ1 |
A | ||
* | SIMP_DOM_PRJ2 |
A | ||
* | SIMP_RAN_PRJ1 |
A | ||
* | SIMP_RAN_PRJ2 |
A | ||
SIMP_SPECIAL_LAMBDA |
A | |||
* | SIMP_FUNIMAGE_LAMBDA |
A | ||
* | SIMP_DOM_LAMBDA |
A | ||
* | SIMP_RAN_LAMBDA |
A | ||
* | SIMP_MULTI_FUNIMAGE_SETENUM_LL |
A | ||
* | SIMP_MULTI_FUNIMAGE_SETENUM_LR |
A | ||
* | SIMP_MULTI_FUNIMAGE_OVERL_SETENUM |
A | ||
* | SIMP_MULTI_FUNIMAGE_BUNION_SETENUM |
A | ||
* | SIMP_FUNIMAGE_CPROD |
A | ||
* | SIMP_FUNIMAGE_ID |
A | ||
* | SIMP_FUNIMAGE_FUNIMAGE_CONVERSE |
A | ||
* | SIMP_FUNIMAGE_CONVERSE_FUNIMAGE |
A | ||
* | SIMP_FUNIMAGE_FUNIMAGE_CONVERSE_SETENUM |
A | ||
* | DEF_BCOMP |
M | ||
* | DERIV_ID_SING |
where is a single expression | M | |
* | SIMP_SPECIAL_DOM |
A | ||
* | SIMP_SPECIAL_RAN |
A | ||
* | SIMP_CONVERSE_CONVERSE |
A | ||
* | DERIV_RELIMAGE_FCOMP |
M | ||
* | DERIV_FCOMP_DOMRES |
M | ||
* | DERIV_FCOMP_DOMSUB |
M | ||
* | DERIV_FCOMP_RANRES |
M | ||
* | DERIV_FCOMP_RANSUB |
M | ||
SIMP_SPECIAL_EQUAL_RELDOMRAN |
idem for operators | A | ||
* | SIMP_TYPE_DOM |
where is a type expression equal to | A | |
* | SIMP_TYPE_RAN |
where is a type expression equal to | A | |
* | SIMP_MULTI_DOM_CPROD |
A | ||
* | SIMP_MULTI_RAN_CPROD |
A | ||
* | DEF_IN_DOM |
M | ||
* | DEF_IN_RAN |
M | ||
* | DEF_IN_CONVERSE |
M | ||
* | DEF_IN_DOMRES |
M | ||
* | DEF_IN_RANRES |
M | ||
* | DEF_IN_DOMSUB |
M | ||
* | DEF_IN_RANSUB |
M | ||
* | DEF_IN_RELIMAGE |
M | ||
* | DEF_IN_FCOMP |
M | ||
* | DEF_OVERL |
M | ||
* | DEF_IN_ID |
M | ||
* | DEF_IN_DPROD |
M | ||
* | DEF_IN_PPROD |
M | ||
* | DEF_IN_RELDOM |
M | ||
* | DEF_IN_RELRAN |
M | ||
* | DEF_IN_RELDOMRAN |
M | ||
* | DEF_IN_FCT |
M | ||
* | DEF_IN_TFCT |
M | ||
* | DEF_IN_INJ |
M | ||
* | DEF_IN_TINJ |
M | ||
* | DEF_IN_SURJ |
M | ||
* | DEF_IN_TSURJ |
M | ||
* | DEF_IN_BIJ |
M | ||
* | DISTRI_BCOMP_BUNION |
M | ||
* | DISTRI_FCOMP_BUNION_R |
M | ||
* | DISTRI_FCOMP_BUNION_L |
M | ||
* | DISTRI_DPROD_BUNION |
M | ||
* | DISTRI_DPROD_BINTER |
M | ||
* | DISTRI_DPROD_SETMINUS |
M | ||
* | DISTRI_DPROD_OVERL |
M | ||
* | DISTRI_PPROD_BUNION |
M | ||
* | DISTRI_PPROD_BINTER |
M | ||
* | DISTRI_PPROD_SETMINUS |
M | ||
* | DISTRI_PPROD_OVERL |
M | ||
* | DISTRI_OVERL_BUNION_L |
M | ||
* | DISTRI_OVERL_BINTER_L |
M | ||
* | DISTRI_DOMRES_BUNION_R |
M | ||
* | DISTRI_DOMRES_BUNION_L |
M | ||
* | DISTRI_DOMRES_BINTER_R |
M | ||
* | DISTRI_DOMRES_BINTER_L |
M | ||
* | DISTRI_DOMRES_SETMINUS_R |
M | ||
* | DISTRI_DOMRES_SETMINUS_L |
M | ||
* | DISTRI_DOMRES_DPROD |
M | ||
* | DISTRI_DOMRES_OVERL |
M | ||
* | DISTRI_DOMSUB_BUNION_R |
M | ||
* | DISTRI_DOMSUB_BUNION_L |
M | ||
* | DISTRI_DOMSUB_BINTER_R |
M | ||
* | DISTRI_DOMSUB_BINTER_L |
M | ||
* | DISTRI_DOMSUB_DPROD |
M | ||
* | DISTRI_DOMSUB_OVERL |
M | ||
* | DISTRI_RANRES_BUNION_R |
M | ||
* | DISTRI_RANRES_BUNION_L |
M | ||
* | DISTRI_RANRES_BINTER_R |
M | ||
* | DISTRI_RANRES_BINTER_L |
M | ||
* | DISTRI_RANRES_SETMINUS_R |
M | ||
* | DISTRI_RANRES_SETMINUS_L |
M | ||
* | DISTRI_RANSUB_BUNION_R |
M | ||
* | DISTRI_RANSUB_BUNION_L |
M | ||
* | DISTRI_RANSUB_BINTER_R |
M | ||
* | DISTRI_RANSUB_BINTER_L |
M | ||
* | DISTRI_CONVERSE_BUNION |
M | ||
* | DISTRI_CONVERSE_BINTER |
M | ||
* | DISTRI_CONVERSE_SETMINUS |
M | ||
* | DISTRI_CONVERSE_BCOMP |
M | ||
* | DISTRI_CONVERSE_FCOMP |
M | ||
* | DISTRI_CONVERSE_PPROD |
M | ||
* | DISTRI_CONVERSE_DOMRES |
M | ||
* | DISTRI_CONVERSE_DOMSUB |
M | ||
* | DISTRI_CONVERSE_RANRES |
M | ||
* | DISTRI_CONVERSE_RANSUB |
M | ||
* | DISTRI_DOM_BUNION |
M | ||
* | DISTRI_RAN_BUNION |
M | ||
* | DISTRI_RELIMAGE_BUNION_R |
M | ||
* | DISTRI_RELIMAGE_BUNION_L |
M | ||
* | DISTRI_DOM_BUNION |
M | ||
* | DISTRI_RAN_BUNION |
M |