Relation Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Son mNo edit summary |
imported>Laurent m Added spacing around "op" |
||
Line 96: | Line 96: | ||
{{RRRow}}|||{{Rulename|SIMP_FUNIMAGE_CONVERSE_FUNIMAGE}}||<math> f^{-1}(f(E)) \;\;\defi\;\; E </math>|| || A | {{RRRow}}|||{{Rulename|SIMP_FUNIMAGE_CONVERSE_FUNIMAGE}}||<math> f^{-1}(f(E)) \;\;\defi\;\; E </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_FUNIMAGE_CONVERSE_SETENUM}}||<math> \{x \mapsto a, \ldots, y \mapsto b\}(\{a \mapsto x, \ldots, b \mapsto y\}(E)) \;\;\defi\;\; E </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_FUNIMAGE_CONVERSE_SETENUM}}||<math> \{x \mapsto a, \ldots, y \mapsto b\}(\{a \mapsto x, \ldots, b \mapsto y\}(E)) \;\;\defi\;\; E </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_DOMRES}}||<math>(E \domres F)(G)\;\;\defi\;\;F(G)</math> || with hypothesis<math> F \in \mathit{A} \mathit{op} \mathit{B}</math> where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || AM | {{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_DOMRES}}||<math>(E \domres F)(G)\;\;\defi\;\;F(G)</math> || with hypothesis<math> F \in \mathit{A} \ \mathit{op}\ \mathit{B}</math> where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || AM | ||
{{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_DOMSUB}}||<math>(E \domsub F)(G)\;\;\defi\;\;F(G)</math> || with hypothesis<math> F \in \mathit{A} \mathit{op} \mathit{B}</math> where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || AM | {{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_DOMSUB}}||<math>(E \domsub F)(G)\;\;\defi\;\;F(G)</math> || with hypothesis<math> F \in \mathit{A} \ \mathit{op}\ \mathit{B}</math> where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || AM | ||
{{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_RANRES}}||<math>(F\ranres E)(G)\;\;\defi\;\;F(G)</math> || with hypothesis<math> F \in \mathit{A} \mathit{op} \mathit{B}</math> where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || AM | {{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_RANRES}}||<math>(F\ranres E)(G)\;\;\defi\;\;F(G)</math> || with hypothesis<math> F \in \mathit{A} \ \mathit{op}\ \mathit{B}</math> where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || AM | ||
{{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_RANSUB}}||<math>(F \ransub E)(G)\;\;\defi\;\;F(G)</math> || with hypothesis<math> F \in \mathit{A} \mathit{op} \mathit{B}</math> where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || AM | {{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_RANSUB}}||<math>(F \ransub E)(G)\;\;\defi\;\;F(G)</math> || with hypothesis<math> F \in \mathit{A} \ \mathit{op}\ \mathit{B}</math> where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || AM | ||
{{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_SETMINUS}}||<math>(F \setminus E)(G)\;\;\defi\;\;F(G)</math> || with hypothesis<math> F \in \mathit{A} \mathit{op} \mathit{B}</math> where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || AM | {{RRRow}}|*||{{Rulename|SIMP_FUNIMAGE_SETMINUS}}||<math>(F \setminus E)(G)\;\;\defi\;\;F(G)</math> || with hypothesis<math> F \in \mathit{A} \ \mathit{op}\ \mathit{B}</math> where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || AM | ||
{{RRRow}}|||{{Rulename|DEF_BCOMP}}||<math> r \bcomp \ldots \bcomp s \;\;\defi\;\; s \fcomp \ldots \fcomp r </math>|| || M | {{RRRow}}|||{{Rulename|DEF_BCOMP}}||<math> r \bcomp \ldots \bcomp s \;\;\defi\;\; s \fcomp \ldots \fcomp r </math>|| || M | ||
{{RRRow}}|||{{Rulename|DERIV_ID_SING}}||<math> \{ E\} \domres \id \;\;\defi\;\; \{ E \mapsto E\} </math>|| where <math>E</math> is a single expression || M | {{RRRow}}|||{{Rulename|DERIV_ID_SING}}||<math> \{ E\} \domres \id \;\;\defi\;\; \{ E \mapsto E\} </math>|| where <math>E</math> is a single expression || M | ||
Line 193: | Line 193: | ||
{{RRRow}}|*||{{Rulename|DISTRI_DOM_BUNION}}||<math> \dom (p \bunion q) \;\;\defi\;\; \dom (p) \bunion \dom (q) </math>|| || M | {{RRRow}}|*||{{Rulename|DISTRI_DOM_BUNION}}||<math> \dom (p \bunion q) \;\;\defi\;\; \dom (p) \bunion \dom (q) </math>|| || M | ||
{{RRRow}}|*||{{Rulename|DISTRI_RAN_BUNION}}||<math> \ran (p \bunion q) \;\;\defi\;\; \ran (p) \bunion \ran (q) </math>|| || M | {{RRRow}}|*||{{Rulename|DISTRI_RAN_BUNION}}||<math> \ran (p \bunion q) \;\;\defi\;\; \ran (p) \bunion \ran (q) </math>|| || M | ||
{{RRRow}}|*||{{Rulename|DERIV_DOM_TOTALREL}}||<math> \dom (r) \;\;\defi\;\; E </math> || with hypothesis <math>r \in E \mathit{op} F</math>, where <math>\mathit{op}</math> is one of <math>\trel, \strel, \tfun, \tinj, \tsur, \tbij</math> || M | {{RRRow}}|*||{{Rulename|DERIV_DOM_TOTALREL}}||<math> \dom (r) \;\;\defi\;\; E </math> || with hypothesis <math>r \in E \ \mathit{op}\ F</math>, where <math>\mathit{op}</math> is one of <math>\trel, \strel, \tfun, \tinj, \tsur, \tbij</math> || M | ||
{{RRRow}}| ||{{Rulename|DERIV_RAN_SURJREL}}||<math> \ran (r) \;\;\defi\;\; F </math> || with hypothesis <math>r \in E \mathit{op} F</math>, where <math>\mathit{op}</math> is one of <math>\srel,\strel, \psur, \tsur, \tbij</math> || M | {{RRRow}}| ||{{Rulename|DERIV_RAN_SURJREL}}||<math> \ran (r) \;\;\defi\;\; F </math> || with hypothesis <math>r \in E \ \mathit{op}\ F</math>, where <math>\mathit{op}</math> is one of <math>\srel,\strel, \psur, \tsur, \tbij</math> || M | ||
{{RRRow}}| ||{{Rulename|prjone-total}}||<math> z \in \dom (\prjone) \;\;\defi\;\; \btrue </math> || || A | {{RRRow}}| ||{{Rulename|prjone-total}}||<math> z \in \dom (\prjone) \;\;\defi\;\; \btrue </math> || || A | ||
{{RRRow}}| ||{{Rulename|prjtwo-total}}||<math> z \in \dom (\prjtwo) \;\;\defi\;\; \btrue </math> || || A | {{RRRow}}| ||{{Rulename|prjtwo-total}}||<math> z \in \dom (\prjtwo) \;\;\defi\;\; \btrue </math> || || A |
Revision as of 09:49, 1 June 2010
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | SIMP_DOM_COMPSET |
A | ||
SIMP_DOM_CONVERSE |
A | |||
* | SIMP_RAN_COMPSET |
A | ||
SIMP_RAN_CONVERSE |
A | |||
* | SIMP_SPECIAL_OVERL |
A | ||
SIMP_MULTI_OVERL |
there is a such that and and are syntactically equal. | A | ||
SIMP_TYPE_OVERL_CPROD |
where is a type expression | A | ||
SIMP_SPECIAL_DOMRES_L |
A | |||
SIMP_SPECIAL_DOMRES_R |
A | |||
SIMP_TYPE_DOMRES |
where is a type expression | A | ||
SIMP_MULTI_DOMRES_DOM |
A | |||
SIMP_MULTI_DOMRES_RAN |
A | |||
SIMP_DOMRES_ID |
A | |||
SIMP_SPECIAL_RANRES_R |
A | |||
SIMP_SPECIAL_RANRES_L |
A | |||
SIMP_TYPE_RANRES |
where is a type expression | A | ||
SIMP_MULTI_RANRES_RAN |
A | |||
SIMP_MULTI_RANRES_DOM |
A | |||
SIMP_RANRES_ID |
A | |||
SIMP_SPECIAL_DOMSUB_L |
A | |||
SIMP_SPECIAL_DOMSUB_R |
A | |||
SIMP_TYPE_DOMSUB |
where is a type expression | A | ||
SIMP_MULTI_DOMSUB_DOM |
A | |||
SIMP_DOMSUB_ID |
A | |||
SIMP_SPECIAL_RANSUB_R |
A | |||
SIMP_SPECIAL_RANSUB_L |
A | |||
SIMP_TYPE_RANSUB |
where is a type expression | A | ||
SIMP_MULTI_RANSUB_RAN |
A | |||
SIMP_RANSUB_ID |
A | |||
SIMP_SPECIAL_FCOMP |
A | |||
SIMP_TYPE_FCOMP_ID |
A | |||
SIMP_TYPE_FCOMP_R |
where is a type expression equal to | A | ||
SIMP_TYPE_FCOMP_L |
where is a type expression equal to | A | ||
SIMP_FCOMP_ID |
A | |||
SIMP_SPECIAL_BCOMP |
A | |||
SIMP_TYPE_BCOMP_ID |
A | |||
SIMP_TYPE_BCOMP_L |
where is a type expression equal to | A | ||
SIMP_TYPE_BCOMP_R |
where is a type expression equal to | A | ||
SIMP_BCOMP_ID |
A | |||
SIMP_SPECIAL_DPROD_R |
A | |||
SIMP_SPECIAL_DPROD_L |
A | |||
SIMP_TYPE_DPROD |
where and are type expressions and and | A | ||
SIMP_SPECIAL_PPROD_R |
A | |||
SIMP_SPECIAL_PPROD_L |
A | |||
SIMP_TYPE_PPROD |
where and are type expressions and and | A | ||
* | SIMP_SPECIAL_RELIMAGE_R |
A | ||
SIMP_SPECIAL_RELIMAGE_L |
A | |||
SIMP_TYPE_RELIMAGE |
where is a type expression | A | ||
SIMP_MULTI_RELIMAGE_DOM |
A | |||
SIMP_TYPE_RELIMAGE_ID |
A | |||
SIMP_RELIMAGE_ID |
A | |||
SIMP_MULTI_RELIMAGE_CPROD_SING |
where is a single expression | A | ||
SIMP_MULTI_RELIMAGE_SING_MAPSTO |
where is a single expression | A | ||
SIMP_MULTI_RELIMAGE_CONVERSE_RANSUB |
A | |||
SIMP_MULTI_RELIMAGE_CONVERSE_RANRES |
A | |||
SIMP_RELIMAGE_CONVERSE_DOMSUB |
A | |||
DERIV_RELIMAGE_RANSUB |
M | |||
DERIV_RELIMAGE_RANRES |
M | |||
SIMP_MULTI_RELIMAGE_DOMSUB |
A | |||
DERIV_RELIMAGE_DOMSUB |
M | |||
DERIV_RELIMAGE_DOMRES |
M | |||
SIMP_SPECIAL_CONVERSE |
A | |||
SIMP_CONVERSE_ID |
A | |||
SIMP_TYPE_CONVERSE |
where is a type expression equal to | A | ||
* | SIMP_CONVERSE_SETENUM |
A | ||
SIMP_CONVERSE_COMPSET |
A | |||
SIMP_SPECIAL_ID |
A | |||
SIMP_DOM_ID |
where has type | A | ||
SIMP_RAN_ID |
where has type | A | ||
SIMP_FCOMP_ID_L |
A | |||
SIMP_FCOMP_ID_R |
A | |||
SIMP_SPECIAL_REL_R |
idem for operators | A | ||
SIMP_SPECIAL_REL_L |
idem for operators | A | ||
SIMP_SPECIAL_EQUAL_REL |
idem for operators | A | ||
SIMP_SPECIAL_EQUAL_RELDOM |
idem for operators | A | ||
SIMP_SPECIAL_PRJ1 |
A | |||
SIMP_SPECIAL_PRJ2 |
A | |||
SIMP_FUNIMAGE_PRJ1 |
A | |||
SIMP_FUNIMAGE_PRJ2 |
A | |||
SIMP_DOM_PRJ1 |
where has type | A | ||
SIMP_DOM_PRJ2 |
where has type | A | ||
SIMP_RAN_PRJ1 |
where has type | A | ||
SIMP_RAN_PRJ2 |
where has type | A | ||
SIMP_SPECIAL_LAMBDA |
A | |||
SIMP_FUNIMAGE_LAMBDA |
A | |||
SIMP_DOM_LAMBDA |
A | |||
SIMP_RAN_LAMBDA |
A | |||
SIMP_MULTI_FUNIMAGE_SETENUM_LL |
A | |||
SIMP_MULTI_FUNIMAGE_SETENUM_LR |
A | |||
* | SIMP_MULTI_FUNIMAGE_OVERL_SETENUM |
A | ||
SIMP_MULTI_FUNIMAGE_BUNION_SETENUM |
A | |||
* | SIMP_FUNIMAGE_CPROD |
A | ||
SIMP_FUNIMAGE_ID |
A | |||
* | SIMP_FUNIMAGE_FUNIMAGE_CONVERSE |
A | ||
SIMP_FUNIMAGE_CONVERSE_FUNIMAGE |
A | |||
* | SIMP_FUNIMAGE_FUNIMAGE_CONVERSE_SETENUM |
A | ||
* | SIMP_FUNIMAGE_DOMRES |
with hypothesis where is one of , , , , , , . | AM | |
* | SIMP_FUNIMAGE_DOMSUB |
with hypothesis where is one of , , , , , , . | AM | |
* | SIMP_FUNIMAGE_RANRES |
with hypothesis where is one of , , , , , , . | AM | |
* | SIMP_FUNIMAGE_RANSUB |
with hypothesis where is one of , , , , , , . | AM | |
* | SIMP_FUNIMAGE_SETMINUS |
with hypothesis where is one of , , , , , , . | AM | |
DEF_BCOMP |
M | |||
DERIV_ID_SING |
where is a single expression | M | ||
* | SIMP_SPECIAL_DOM |
A | ||
* | SIMP_SPECIAL_RAN |
A | ||
* | SIMP_CONVERSE_CONVERSE |
A | ||
* | DERIV_RELIMAGE_FCOMP |
M | ||
* | DERIV_FCOMP_DOMRES |
M | ||
* | DERIV_FCOMP_DOMSUB |
M | ||
* | DERIV_FCOMP_RANRES |
M | ||
* | DERIV_FCOMP_RANSUB |
M | ||
SIMP_SPECIAL_EQUAL_RELDOMRAN |
idem for operators | A | ||
SIMP_TYPE_DOM |
where is a type expression equal to | A | ||
SIMP_TYPE_RAN |
where is a type expression equal to | A | ||
SIMP_MULTI_DOM_CPROD |
A | |||
SIMP_MULTI_RAN_CPROD |
A | |||
* | DEF_IN_DOM |
M | ||
* | DEF_IN_RAN |
M | ||
* | DEF_IN_CONVERSE |
M | ||
* | DEF_IN_DOMRES |
M | ||
* | DEF_IN_RANRES |
M | ||
* | DEF_IN_DOMSUB |
M | ||
* | DEF_IN_RANSUB |
M | ||
* | DEF_IN_RELIMAGE |
M | ||
* | DEF_IN_FCOMP |
M | ||
* | DEF_OVERL |
M | ||
* | DEF_IN_ID |
M | ||
* | DEF_IN_DPROD |
M | ||
* | DEF_IN_PPROD |
M | ||
* | DEF_IN_RELDOM |
M | ||
* | DEF_IN_RELRAN |
M | ||
* | DEF_IN_RELDOMRAN |
M | ||
* | DEF_IN_FCT |
M | ||
* | DEF_IN_TFCT |
M | ||
* | DEF_IN_INJ |
M | ||
* | DEF_IN_TINJ |
M | ||
* | DEF_IN_SURJ |
M | ||
* | DEF_IN_TSURJ |
M | ||
* | DEF_IN_BIJ |
M | ||
DISTRI_BCOMP_BUNION |
M | |||
* | DISTRI_FCOMP_BUNION_R |
M | ||
* | DISTRI_FCOMP_BUNION_L |
M | ||
DISTRI_DPROD_BUNION |
M | |||
DISTRI_DPROD_BINTER |
M | |||
DISTRI_DPROD_SETMINUS |
M | |||
DISTRI_DPROD_OVERL |
M | |||
DISTRI_PPROD_BUNION |
M | |||
DISTRI_PPROD_BINTER |
M | |||
DISTRI_PPROD_SETMINUS |
M | |||
DISTRI_PPROD_OVERL |
M | |||
DISTRI_OVERL_BUNION_L |
M | |||
DISTRI_OVERL_BINTER_L |
M | |||
* | DISTRI_DOMRES_BUNION_R |
M | ||
* | DISTRI_DOMRES_BUNION_L |
M | ||
* | DISTRI_DOMRES_BINTER_R |
M | ||
* | DISTRI_DOMRES_BINTER_L |
M | ||
DISTRI_DOMRES_SETMINUS_R |
M | |||
DISTRI_DOMRES_SETMINUS_L |
M | |||
DISTRI_DOMRES_DPROD |
M | |||
DISTRI_DOMRES_OVERL |
M | |||
* | DISTRI_DOMSUB_BUNION_R |
M | ||
* | DISTRI_DOMSUB_BUNION_L |
M | ||
* | DISTRI_DOMSUB_BINTER_R |
M | ||
* | DISTRI_DOMSUB_BINTER_L |
M | ||
DISTRI_DOMSUB_DPROD |
M | |||
DISTRI_DOMSUB_OVERL |
M | |||
* | DISTRI_RANRES_BUNION_R |
M | ||
* | DISTRI_RANRES_BUNION_L |
M | ||
* | DISTRI_RANRES_BINTER_R |
M | ||
* | DISTRI_RANRES_BINTER_L |
M | ||
DISTRI_RANRES_SETMINUS_R |
M | |||
DISTRI_RANRES_SETMINUS_L |
M | |||
* | DISTRI_RANSUB_BUNION_R |
M | ||
* | DISTRI_RANSUB_BUNION_L |
M | ||
* | DISTRI_RANSUB_BINTER_R |
M | ||
* | DISTRI_RANSUB_BINTER_L |
M | ||
* | DISTRI_CONVERSE_BUNION |
M | ||
DISTRI_CONVERSE_BINTER |
M | |||
DISTRI_CONVERSE_SETMINUS |
M | |||
DISTRI_CONVERSE_BCOMP |
M | |||
DISTRI_CONVERSE_FCOMP |
M | |||
DISTRI_CONVERSE_PPROD |
M | |||
DISTRI_CONVERSE_DOMRES |
M | |||
DISTRI_CONVERSE_DOMSUB |
M | |||
DISTRI_CONVERSE_RANRES |
M | |||
DISTRI_CONVERSE_RANSUB |
M | |||
* | DISTRI_DOM_BUNION |
M | ||
* | DISTRI_RAN_BUNION |
M | ||
* | DISTRI_RELIMAGE_BUNION_R |
M | ||
* | DISTRI_RELIMAGE_BUNION_L |
M | ||
* | DISTRI_DOM_BUNION |
M | ||
* | DISTRI_RAN_BUNION |
M | ||
* | DERIV_DOM_TOTALREL |
with hypothesis , where is one of | M | |
DERIV_RAN_SURJREL |
with hypothesis , where is one of | M | ||
prjone-total |
A | |||
prjtwo-total |
A | |||
prjone-functional |
where \mathit{op} is one of | A | ||
prjtwo-functional |
where \mathit{op} is one of | A | ||
prj-expand |
M |