Relation Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Benoit m Added stars to the automatic rules implemented in auto rewriter L2. |
imported>Benoit m Added stars to the automatic rules implemented in auto rewriter L2. |
||
Line 9: | Line 9: | ||
{{RRRow}}|*||{{Rulename|SIMP_RAN_CONVERSE}}||<math> \ran (r^{-1} ) \;\;\defi\;\; \dom (r) </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_RAN_CONVERSE}}||<math> \ran (r^{-1} ) \;\;\defi\;\; \dom (r) </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_OVERL}}||<math> r \ovl \ldots \ovl \emptyset \ovl \ldots \ovl s \;\;\defi\;\; r \ovl \ldots \ovl s </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_OVERL}}||<math> r \ovl \ldots \ovl \emptyset \ovl \ldots \ovl s \;\;\defi\;\; r \ovl \ldots \ovl s </math>|| || A | ||
{{RRRow}}| ||{{Rulename|SIMP_MULTI_OVERL}}||<math>r_1 \ovl \cdots \ovl r_n \defi r_1 \ovl \cdots \ovl r_{i-1} \ovl r_{i+1} \ovl \cdots \ovl r_n</math>|| there is a <math>j</math> such that <math>1\leq i < j \leq n</math> and <math>r_i</math> and <math>r_j</math> are syntactically equal. || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_OVERL}}||<math>r_1 \ovl \cdots \ovl r_n \defi r_1 \ovl \cdots \ovl r_{i-1} \ovl r_{i+1} \ovl \cdots \ovl r_n</math>|| there is a <math>j</math> such that <math>1\leq i < j \leq n</math> and <math>r_i</math> and <math>r_j</math> are syntactically equal. || A | ||
{{RRRow}}|*||{{Rulename|SIMP_TYPE_OVERL_CPROD}}||<math> r\ovl\cdots\ovl\mathit{Ty}\ovl\cdots\ovl s \;\defi\;\; \mathit{Ty}\ovl\cdots\ovl s </math>|| where <math>\mathit{Ty}</math> is a type expression || A | {{RRRow}}|*||{{Rulename|SIMP_TYPE_OVERL_CPROD}}||<math> r\ovl\cdots\ovl\mathit{Ty}\ovl\cdots\ovl s \;\defi\;\; \mathit{Ty}\ovl\cdots\ovl s </math>|| where <math>\mathit{Ty}</math> is a type expression || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_DOMRES_L}}||<math> \emptyset \domres r \;\;\defi\;\; \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_DOMRES_L}}||<math> \emptyset \domres r \;\;\defi\;\; \emptyset </math>|| || A | ||
Line 16: | Line 16: | ||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_DOMRES_DOM}}||<math> \dom (r) \domres r \;\;\defi\;\; r </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_DOMRES_DOM}}||<math> \dom (r) \domres r \;\;\defi\;\; r </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_DOMRES_RAN}}||<math> \ran (r) \domres r^{-1} \;\;\defi\;\; r^{-1} </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_DOMRES_RAN}}||<math> \ran (r) \domres r^{-1} \;\;\defi\;\; r^{-1} </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_DOMRES_DOMRES_ID}}||<math> S \domres (T \domres \id) \;\;\defi\;\; (S \binter T) \domres \id </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_DOMRES_DOMRES_ID}}||<math> S \domres (T \domres \id) \;\;\defi\;\; (S \binter T) \domres \id </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_DOMRES_DOMSUB_ID}}||<math> S \domres (T \domsub \id) \;\;\defi\;\; (S \setminus T) \domres \id </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_DOMRES_DOMSUB_ID}}||<math> S \domres (T \domsub \id) \;\;\defi\;\; (S \setminus T) \domres \id </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_RANRES_R}}||<math> r \ranres \emptyset \;\;\defi\;\; \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_RANRES_R}}||<math> r \ranres \emptyset \;\;\defi\;\; \emptyset </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_RANRES_L}}||<math> \emptyset \ranres S \;\;\defi\;\; \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_RANRES_L}}||<math> \emptyset \ranres S \;\;\defi\;\; \emptyset </math>|| || A | ||
Line 23: | Line 23: | ||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_RANRES_RAN}}||<math> r \ranres \ran (r) \;\;\defi\;\; r </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_RANRES_RAN}}||<math> r \ranres \ran (r) \;\;\defi\;\; r </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_RANRES_DOM}}||<math> r^{-1} \ranres \dom (r) \;\;\defi\;\; r^{-1} </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_RANRES_DOM}}||<math> r^{-1} \ranres \dom (r) \;\;\defi\;\; r^{-1} </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_RANRES_ID}}||<math> \id \ranres S \;\;\defi\;\; S \domres \id </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_RANRES_ID}}||<math> \id \ranres S \;\;\defi\;\; S \domres \id </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_RANSUB_ID}}||<math> \id \ransub S \;\;\defi\;\; S \domsub \id </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_RANSUB_ID}}||<math> \id \ransub S \;\;\defi\;\; S \domsub \id </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_RANRES_DOMRES_ID}}||<math> (S \domres \id) \ranres T \;\;\defi\;\; (S \binter T) \domres \id </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_RANRES_DOMRES_ID}}||<math> (S \domres \id) \ranres T \;\;\defi\;\; (S \binter T) \domres \id </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_RANRES_DOMSUB_ID}}||<math> (S \domsub \id) \ranres T \;\;\defi\;\; (T \setminus S) \domres \id </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_RANRES_DOMSUB_ID}}||<math> (S \domsub \id) \ranres T \;\;\defi\;\; (T \setminus S) \domres \id </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_DOMSUB_L}}||<math> \emptyset \domsub r \;\;\defi\;\; r </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_DOMSUB_L}}||<math> \emptyset \domsub r \;\;\defi\;\; r </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_DOMSUB_R}}||<math> S \domsub \emptyset \;\;\defi\;\; \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_DOMSUB_R}}||<math> S \domsub \emptyset \;\;\defi\;\; \emptyset </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_TYPE_DOMSUB}}||<math> \mathit{Ty} \domsub r \;\;\defi\;\; \emptyset </math>|| where <math>\mathit{Ty}</math> is a type expression || A | {{RRRow}}|*||{{Rulename|SIMP_TYPE_DOMSUB}}||<math> \mathit{Ty} \domsub r \;\;\defi\;\; \emptyset </math>|| where <math>\mathit{Ty}</math> is a type expression || A | ||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_DOMSUB_DOM}}||<math> \dom (r) \domsub r \;\;\defi\;\; \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_DOMSUB_DOM}}||<math> \dom (r) \domsub r \;\;\defi\;\; \emptyset </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_MULTI_DOMSUB_RAN}}||<math> \ran (r) \domsub r^{-1} \;\;\defi\;\; \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_DOMSUB_RAN}}||<math> \ran (r) \domsub r^{-1} \;\;\defi\;\; \emptyset </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_DOMSUB_DOMRES_ID}}||<math> S \domsub (T \domres \id ) \;\;\defi\;\; (T \setminus S) \domres \id </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_DOMSUB_DOMRES_ID}}||<math> S \domsub (T \domres \id ) \;\;\defi\;\; (T \setminus S) \domres \id </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_DOMSUB_DOMSUB_ID}}||<math> S \domsub (T \domsub \id ) \;\;\defi\;\; (S \bunion T) \domsub \id </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_DOMSUB_DOMSUB_ID}}||<math> S \domsub (T \domsub \id ) \;\;\defi\;\; (S \bunion T) \domsub \id </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_RANSUB_R}}||<math> r \ransub \emptyset \;\;\defi\;\; r </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_RANSUB_R}}||<math> r \ransub \emptyset \;\;\defi\;\; r </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_RANSUB_L}}||<math> \emptyset \ransub S \;\;\defi\;\; \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_RANSUB_L}}||<math> \emptyset \ransub S \;\;\defi\;\; \emptyset </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_TYPE_RANSUB}}||<math> r \ransub \mathit{Ty} \;\;\defi\;\; \emptyset </math>|| where <math>\mathit{Ty}</math> is a type expression || A | {{RRRow}}|*||{{Rulename|SIMP_TYPE_RANSUB}}||<math> r \ransub \mathit{Ty} \;\;\defi\;\; \emptyset </math>|| where <math>\mathit{Ty}</math> is a type expression || A | ||
{{RRRow}}|||{{Rulename|SIMP_MULTI_RANSUB_DOM}}||<math> r^{-1} \ransub \dom (r) \;\;\defi\;\; \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_RANSUB_DOM}}||<math> r^{-1} \ransub \dom (r) \;\;\defi\;\; \emptyset </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_RANSUB_RAN}}||<math> r \ransub \ran (r) \;\;\defi\;\; \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_RANSUB_RAN}}||<math> r \ransub \ran (r) \;\;\defi\;\; \emptyset </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_RANSUB_DOMRES_ID}}||<math> (S \domres \id) \ransub T \;\;\defi\;\; (S \setminus T) \domres \id </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_RANSUB_DOMRES_ID}}||<math> (S \domres \id) \ransub T \;\;\defi\;\; (S \setminus T) \domres \id </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_RANSUB_DOMSUB_ID}}||<math> (S \domsub \id) \ransub T \;\;\defi\;\; (S \bunion T) \domsub \id </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_RANSUB_DOMSUB_ID}}||<math> (S \domsub \id) \ransub T \;\;\defi\;\; (S \bunion T) \domsub \id </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_FCOMP}}||<math> r \fcomp \ldots \fcomp \emptyset \fcomp \ldots \fcomp s \;\;\defi\;\; \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_FCOMP}}||<math> r \fcomp \ldots \fcomp \emptyset \fcomp \ldots \fcomp s \;\;\defi\;\; \emptyset </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_TYPE_FCOMP_ID}}||<math> r \fcomp \ldots \fcomp \id \fcomp \ldots \fcomp s \;\;\defi\;\; r \fcomp \ldots \fcomp s </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_TYPE_FCOMP_ID}}||<math> r \fcomp \ldots \fcomp \id \fcomp \ldots \fcomp s \;\;\defi\;\; r \fcomp \ldots \fcomp s </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_TYPE_FCOMP_R}}||<math> r \fcomp \mathit{Ty} \;\;\defi\;\; \dom (r) \cprod \mathit{Tb} </math>|| where <math>\mathit{Ty}</math> is a type expression equal to <math>\mathit{Ta} \cprod \mathit{Tb}</math> || A | {{RRRow}}|*||{{Rulename|SIMP_TYPE_FCOMP_R}}||<math> r \fcomp \mathit{Ty} \;\;\defi\;\; \dom (r) \cprod \mathit{Tb} </math>|| where <math>\mathit{Ty}</math> is a type expression equal to <math>\mathit{Ta} \cprod \mathit{Tb}</math> || A | ||
{{RRRow}}|*||{{Rulename|SIMP_TYPE_FCOMP_L}}||<math> \mathit{Ty} \fcomp r \;\;\defi\;\; \mathit{Ta} \cprod \ran (r) </math>|| where <math>\mathit{Ty}</math> is a type expression equal to <math>\mathit{Ta} \cprod \mathit{Tb}</math> || A | {{RRRow}}|*||{{Rulename|SIMP_TYPE_FCOMP_L}}||<math> \mathit{Ty} \fcomp r \;\;\defi\;\; \mathit{Ta} \cprod \ran (r) </math>|| where <math>\mathit{Ty}</math> is a type expression equal to <math>\mathit{Ta} \cprod \mathit{Tb}</math> || A | ||
{{RRRow}}|||{{Rulename|SIMP_FCOMP_ID}}||<math> r \fcomp \ldots \fcomp S \domres \id \fcomp T \domres \id \fcomp \ldots s \;\;\defi\;\; r \fcomp \ldots \fcomp (S \binter T) \domres \id \fcomp \ldots \fcomp s </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_FCOMP_ID}}||<math> r \fcomp \ldots \fcomp S \domres \id \fcomp T \domres \id \fcomp \ldots s \;\;\defi\;\; r \fcomp \ldots \fcomp (S \binter T) \domres \id \fcomp \ldots \fcomp s </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_BCOMP}}||<math> r \bcomp \ldots \bcomp \emptyset \bcomp \ldots \bcomp s \;\;\defi\;\; \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_BCOMP}}||<math> r \bcomp \ldots \bcomp \emptyset \bcomp \ldots \bcomp s \;\;\defi\;\; \emptyset </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_TYPE_BCOMP_ID}}||<math> r \bcomp \ldots \bcomp \id \bcomp \ldots \bcomp s \;\;\defi\;\; r \bcomp \ldots \bcomp s </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_TYPE_BCOMP_ID}}||<math> r \bcomp \ldots \bcomp \id \bcomp \ldots \bcomp s \;\;\defi\;\; r \bcomp \ldots \bcomp s </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_TYPE_BCOMP_L}}||<math> \mathit{Ty} \bcomp r \;\;\defi\;\; \dom (r) \cprod \mathit{Tb} </math>|| where <math>\mathit{Ty}</math> is a type expression equal to <math>\mathit{Ta} \cprod \mathit{Tb}</math> || A | {{RRRow}}|*||{{Rulename|SIMP_TYPE_BCOMP_L}}||<math> \mathit{Ty} \bcomp r \;\;\defi\;\; \dom (r) \cprod \mathit{Tb} </math>|| where <math>\mathit{Ty}</math> is a type expression equal to <math>\mathit{Ta} \cprod \mathit{Tb}</math> || A | ||
{{RRRow}}|*||{{Rulename|SIMP_TYPE_BCOMP_R}}||<math> r \bcomp \mathit{Ty} \;\;\defi\;\; \mathit{Ta} \cprod \ran (r) </math>|| where <math>\mathit{Ty}</math> is a type expression equal to <math>\mathit{Ta} \cprod \mathit{Tb}</math> || A | {{RRRow}}|*||{{Rulename|SIMP_TYPE_BCOMP_R}}||<math> r \bcomp \mathit{Ty} \;\;\defi\;\; \mathit{Ta} \cprod \ran (r) </math>|| where <math>\mathit{Ty}</math> is a type expression equal to <math>\mathit{Ta} \cprod \mathit{Tb}</math> || A | ||
{{RRRow}}|||{{Rulename|SIMP_BCOMP_ID}}||<math> r \bcomp \ldots \bcomp S \domres \id \bcomp T \domres \id \bcomp \ldots \bcomp s \;\;\defi\;\; r \bcomp \ldots \bcomp (S \binter T) \domres \id \bcomp \ldots \bcomp s </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_BCOMP_ID}}||<math> r \bcomp \ldots \bcomp S \domres \id \bcomp T \domres \id \bcomp \ldots \bcomp s \;\;\defi\;\; r \bcomp \ldots \bcomp (S \binter T) \domres \id \bcomp \ldots \bcomp s </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_DPROD_R}}||<math> r \dprod \emptyset \;\;\defi\;\; \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_DPROD_R}}||<math> r \dprod \emptyset \;\;\defi\;\; \emptyset </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_DPROD_L}}||<math> \emptyset \dprod r \;\;\defi\;\; \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_DPROD_L}}||<math> \emptyset \dprod r \;\;\defi\;\; \emptyset </math>|| || A | ||
Line 61: | Line 61: | ||
{{RRRow}}|*||{{Rulename|SIMP_TYPE_RELIMAGE}}||<math> r[Ty] \;\;\defi\;\; \ran (r) </math>|| where <math>\mathit{Ty}</math> is a type expression || A | {{RRRow}}|*||{{Rulename|SIMP_TYPE_RELIMAGE}}||<math> r[Ty] \;\;\defi\;\; \ran (r) </math>|| where <math>\mathit{Ty}</math> is a type expression || A | ||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_RELIMAGE_DOM}}||<math> r[\dom (r)] \;\;\defi\;\; \ran (r) </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_RELIMAGE_DOM}}||<math> r[\dom (r)] \;\;\defi\;\; \ran (r) </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_RELIMAGE_ID}}||<math> \id[T] \;\;\defi\;\; T </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_RELIMAGE_ID}}||<math> \id[T] \;\;\defi\;\; T </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_RELIMAGE_DOMRES_ID}}||<math> (S \domres \id)[T] \;\;\defi\;\; S \binter T </math>|| || A | {{RRRow}}|||{{Rulename|SIMP_RELIMAGE_DOMRES_ID}}||<math> (S \domres \id)[T] \;\;\defi\;\; S \binter T </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_RELIMAGE_DOMSUB_ID}}||<math> (S \domsub \id)[T] \;\;\defi\;\; T \setminus S </math>|| || A | {{RRRow}}|||{{Rulename|SIMP_RELIMAGE_DOMSUB_ID}}||<math> (S \domsub \id)[T] \;\;\defi\;\; T \setminus S </math>|| || A |
Revision as of 17:19, 17 January 2011
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Rewrite_Rules.
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | SIMP_DOM_SETENUM |
A | ||
* | SIMP_DOM_CONVERSE |
A | ||
* | SIMP_RAN_SETENUM |
A | ||
* | SIMP_RAN_CONVERSE |
A | ||
* | SIMP_SPECIAL_OVERL |
A | ||
* | SIMP_MULTI_OVERL |
there is a such that and and are syntactically equal. | A | |
* | SIMP_TYPE_OVERL_CPROD |
where is a type expression | A | |
* | SIMP_SPECIAL_DOMRES_L |
A | ||
* | SIMP_SPECIAL_DOMRES_R |
A | ||
* | SIMP_TYPE_DOMRES |
where is a type expression | A | |
* | SIMP_MULTI_DOMRES_DOM |
A | ||
* | SIMP_MULTI_DOMRES_RAN |
A | ||
* | SIMP_DOMRES_DOMRES_ID |
A | ||
* | SIMP_DOMRES_DOMSUB_ID |
A | ||
* | SIMP_SPECIAL_RANRES_R |
A | ||
* | SIMP_SPECIAL_RANRES_L |
A | ||
* | SIMP_TYPE_RANRES |
where is a type expression | A | |
* | SIMP_MULTI_RANRES_RAN |
A | ||
* | SIMP_MULTI_RANRES_DOM |
A | ||
* | SIMP_RANRES_ID |
A | ||
* | SIMP_RANSUB_ID |
A | ||
* | SIMP_RANRES_DOMRES_ID |
A | ||
* | SIMP_RANRES_DOMSUB_ID |
A | ||
* | SIMP_SPECIAL_DOMSUB_L |
A | ||
* | SIMP_SPECIAL_DOMSUB_R |
A | ||
* | SIMP_TYPE_DOMSUB |
where is a type expression | A | |
* | SIMP_MULTI_DOMSUB_DOM |
A | ||
* | SIMP_MULTI_DOMSUB_RAN |
A | ||
* | SIMP_DOMSUB_DOMRES_ID |
A | ||
* | SIMP_DOMSUB_DOMSUB_ID |
A | ||
* | SIMP_SPECIAL_RANSUB_R |
A | ||
* | SIMP_SPECIAL_RANSUB_L |
A | ||
* | SIMP_TYPE_RANSUB |
where is a type expression | A | |
* | SIMP_MULTI_RANSUB_DOM |
A | ||
* | SIMP_MULTI_RANSUB_RAN |
A | ||
* | SIMP_RANSUB_DOMRES_ID |
A | ||
* | SIMP_RANSUB_DOMSUB_ID |
A | ||
* | SIMP_SPECIAL_FCOMP |
A | ||
* | SIMP_TYPE_FCOMP_ID |
A | ||
* | SIMP_TYPE_FCOMP_R |
where is a type expression equal to | A | |
* | SIMP_TYPE_FCOMP_L |
where is a type expression equal to | A | |
* | SIMP_FCOMP_ID |
A | ||
* | SIMP_SPECIAL_BCOMP |
A | ||
* | SIMP_TYPE_BCOMP_ID |
A | ||
* | SIMP_TYPE_BCOMP_L |
where is a type expression equal to | A | |
* | SIMP_TYPE_BCOMP_R |
where is a type expression equal to | A | |
* | SIMP_BCOMP_ID |
A | ||
* | SIMP_SPECIAL_DPROD_R |
A | ||
* | SIMP_SPECIAL_DPROD_L |
A | ||
* | SIMP_DPROD_CPROD |
A | ||
* | SIMP_SPECIAL_PPROD_R |
A | ||
* | SIMP_SPECIAL_PPROD_L |
A | ||
* | SIMP_PPROD_CPROD |
A | ||
* | SIMP_SPECIAL_RELIMAGE_R |
A | ||
* | SIMP_SPECIAL_RELIMAGE_L |
A | ||
* | SIMP_TYPE_RELIMAGE |
where is a type expression | A | |
* | SIMP_MULTI_RELIMAGE_DOM |
A | ||
* | SIMP_RELIMAGE_ID |
A | ||
SIMP_RELIMAGE_DOMRES_ID |
A | |||
SIMP_RELIMAGE_DOMSUB_ID |
A | |||
* | SIMP_MULTI_RELIMAGE_CPROD_SING |
where is a single expression | A | |
* | SIMP_MULTI_RELIMAGE_SING_MAPSTO |
where is a single expression | A | |
* | SIMP_MULTI_RELIMAGE_CONVERSE_RANSUB |
A | ||
* | SIMP_MULTI_RELIMAGE_CONVERSE_RANRES |
A | ||
* | SIMP_RELIMAGE_CONVERSE_DOMSUB |
A | ||
DERIV_RELIMAGE_RANSUB |
M | |||
DERIV_RELIMAGE_RANRES |
M | |||
* | SIMP_MULTI_RELIMAGE_DOMSUB |
A | ||
DERIV_RELIMAGE_DOMSUB |
M | |||
DERIV_RELIMAGE_DOMRES |
M | |||
* | SIMP_SPECIAL_CONVERSE |
A | ||
* | SIMP_CONVERSE_ID |
A | ||
* | SIMP_CONVERSE_CPROD |
A | ||
* | SIMP_CONVERSE_SETENUM |
A | ||
* | SIMP_CONVERSE_COMPSET |
A | ||
* | SIMP_DOM_ID |
where has type | A | |
* | SIMP_RAN_ID |
where has type | A | |
* | SIMP_FCOMP_ID_L |
A | ||
* | SIMP_FCOMP_ID_R |
A | ||
* | SIMP_SPECIAL_REL_R |
idem for operators | A | |
* | SIMP_SPECIAL_REL_L |
idem for operators | A | |
* | SIMP_SPECIAL_EQUAL_REL |
idem for operators | A | |
* | SIMP_SPECIAL_EQUAL_RELDOM |
idem for operators | A | |
* | SIMP_FUNIMAGE_PRJ1 |
A | ||
* | SIMP_FUNIMAGE_PRJ2 |
A | ||
* | SIMP_DOM_PRJ1 |
where has type | A | |
* | SIMP_DOM_PRJ2 |
where has type | A | |
* | SIMP_RAN_PRJ1 |
where has type | A | |
* | SIMP_RAN_PRJ2 |
where has type | A | |
* | SIMP_FUNIMAGE_LAMBDA |
A | ||
* | SIMP_DOM_LAMBDA |
A | ||
* | SIMP_RAN_LAMBDA |
A | ||
* | SIMP_IN_FUNIMAGE |
A | ||
* | SIMP_IN_FUNIMAGE_CONVERSE_L |
A | ||
* | SIMP_IN_FUNIMAGE_CONVERSE_R |
A | ||
* | SIMP_MULTI_FUNIMAGE_SETENUM_LL |
A | ||
* | SIMP_MULTI_FUNIMAGE_SETENUM_LR |
A | ||
* | SIMP_MULTI_FUNIMAGE_OVERL_SETENUM |
A | ||
* | SIMP_MULTI_FUNIMAGE_BUNION_SETENUM |
A | ||
* | SIMP_FUNIMAGE_CPROD |
A | ||
* | SIMP_FUNIMAGE_ID |
A | ||
* | SIMP_FUNIMAGE_FUNIMAGE_CONVERSE |
A | ||
* | SIMP_FUNIMAGE_CONVERSE_FUNIMAGE |
A | ||
* | SIMP_FUNIMAGE_FUNIMAGE_CONVERSE_SETENUM |
A | ||
* | SIMP_FUNIMAGE_DOMRES |
with hypothesis where is one of , , , , , , . | AM | |
* | SIMP_FUNIMAGE_DOMSUB |
with hypothesis where is one of , , , , , , . | AM | |
* | SIMP_FUNIMAGE_RANRES |
with hypothesis where is one of , , , , , , . | AM | |
* | SIMP_FUNIMAGE_RANSUB |
with hypothesis where is one of , , , , , , . | AM | |
* | SIMP_FUNIMAGE_SETMINUS |
with hypothesis where is one of , , , , , , . | AM | |
DEF_BCOMP |
M | |||
DERIV_ID_SING |
where is a single expression | M | ||
* | SIMP_SPECIAL_DOM |
A | ||
* | SIMP_SPECIAL_RAN |
A | ||
* | SIMP_CONVERSE_CONVERSE |
A | ||
* | DERIV_RELIMAGE_FCOMP |
M | ||
* | DERIV_FCOMP_DOMRES |
M | ||
* | DERIV_FCOMP_DOMSUB |
M | ||
* | DERIV_FCOMP_RANRES |
M | ||
* | DERIV_FCOMP_RANSUB |
M | ||
* | SIMP_SPECIAL_EQUAL_RELDOMRAN |
idem for operators | A | |
* | SIMP_TYPE_DOM |
where is a type expression equal to | A | |
* | SIMP_TYPE_RAN |
where is a type expression equal to | A | |
* | SIMP_MULTI_DOM_CPROD |
A | ||
* | SIMP_MULTI_RAN_CPROD |
A | ||
* | DEF_IN_DOM |
M | ||
* | DEF_IN_RAN |
M | ||
* | DEF_IN_CONVERSE |
M | ||
* | DEF_IN_DOMRES |
M | ||
* | DEF_IN_RANRES |
M | ||
* | DEF_IN_DOMSUB |
M | ||
* | DEF_IN_RANSUB |
M | ||
* | DEF_IN_RELIMAGE |
M | ||
* | DEF_IN_FCOMP |
M | ||
* | DEF_OVERL |
M | ||
* | DEF_IN_ID |
M | ||
* | DEF_IN_DPROD |
M | ||
* | DEF_IN_PPROD |
M | ||
* | DEF_IN_REL |
M | ||
* | DEF_IN_RELDOM |
M | ||
* | DEF_IN_RELRAN |
M | ||
* | DEF_IN_RELDOMRAN |
M | ||
* | DEF_IN_FCT |
M | ||
* | DEF_IN_TFCT |
M | ||
* | DEF_IN_INJ |
M | ||
* | DEF_IN_TINJ |
M | ||
* | DEF_IN_SURJ |
M | ||
* | DEF_IN_TSURJ |
M | ||
* | DEF_IN_BIJ |
M | ||
DISTRI_BCOMP_BUNION |
M | |||
* | DISTRI_FCOMP_BUNION_R |
M | ||
* | DISTRI_FCOMP_BUNION_L |
M | ||
DISTRI_DPROD_BUNION |
M | |||
DISTRI_DPROD_BINTER |
M | |||
DISTRI_DPROD_SETMINUS |
M | |||
DISTRI_DPROD_OVERL |
M | |||
DISTRI_PPROD_BUNION |
M | |||
DISTRI_PPROD_BINTER |
M | |||
DISTRI_PPROD_SETMINUS |
M | |||
DISTRI_PPROD_OVERL |
M | |||
DISTRI_OVERL_BUNION_L |
M | |||
DISTRI_OVERL_BINTER_L |
M | |||
* | DISTRI_DOMRES_BUNION_R |
M | ||
* | DISTRI_DOMRES_BUNION_L |
M | ||
* | DISTRI_DOMRES_BINTER_R |
M | ||
* | DISTRI_DOMRES_BINTER_L |
M | ||
DISTRI_DOMRES_SETMINUS_R |
M | |||
DISTRI_DOMRES_SETMINUS_L |
M | |||
DISTRI_DOMRES_DPROD |
M | |||
DISTRI_DOMRES_OVERL |
M | |||
* | DISTRI_DOMSUB_BUNION_R |
M | ||
* | DISTRI_DOMSUB_BUNION_L |
M | ||
* | DISTRI_DOMSUB_BINTER_R |
M | ||
* | DISTRI_DOMSUB_BINTER_L |
M | ||
DISTRI_DOMSUB_DPROD |
M | |||
DISTRI_DOMSUB_OVERL |
M | |||
* | DISTRI_RANRES_BUNION_R |
M | ||
* | DISTRI_RANRES_BUNION_L |
M | ||
* | DISTRI_RANRES_BINTER_R |
M | ||
* | DISTRI_RANRES_BINTER_L |
M | ||
DISTRI_RANRES_SETMINUS_R |
M | |||
DISTRI_RANRES_SETMINUS_L |
M | |||
* | DISTRI_RANSUB_BUNION_R |
M | ||
* | DISTRI_RANSUB_BUNION_L |
M | ||
* | DISTRI_RANSUB_BINTER_R |
M | ||
* | DISTRI_RANSUB_BINTER_L |
M | ||
* | DISTRI_CONVERSE_BUNION |
M | ||
DISTRI_CONVERSE_BINTER |
M | |||
DISTRI_CONVERSE_SETMINUS |
M | |||
DISTRI_CONVERSE_BCOMP |
M | |||
DISTRI_CONVERSE_FCOMP |
M | |||
DISTRI_CONVERSE_PPROD |
M | |||
DISTRI_CONVERSE_DOMRES |
M | |||
DISTRI_CONVERSE_DOMSUB |
M | |||
DISTRI_CONVERSE_RANRES |
M | |||
DISTRI_CONVERSE_RANSUB |
M | |||
* | DISTRI_DOM_BUNION |
M | ||
* | DISTRI_RAN_BUNION |
M | ||
* | DISTRI_RELIMAGE_BUNION_R |
M | ||
* | DISTRI_RELIMAGE_BUNION_L |
M | ||
* | DERIV_DOM_TOTALREL |
with hypothesis , where is one of | M | |
DERIV_RAN_SURJREL |
with hypothesis , where is one of | M | ||
b | prjone-functional |
where is one of | A | |
b | prjtwo-functional |
where is one of | A | |
prj-expand |
M |